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Forward Problem

d = G(m) + ε

• G : RN → Rn a mathematical model that may be an analytical or differential
equation, an algorithm or a “black box” with inputs and outputs.

• m ∈ RN - parameters in the system

• d ∈ Rn - results, or observations of the system

• ε ∈ Rn - error from obtaining observations/results or failure of the model to
describe the system



Inverse Problem
Parameter estimation:

m = G−1(d + ε)

• G−1 : Rn → RN represents the inverse operator

However in practice:
m̂ = arg min ‖d−G(m)‖

This is typically an ill-posed problem

• different causes sometimes lead to the same effects

• small change in the data can result in a significant change in the estimated
parameters



Bayesian Approach

Given the prior distribution ρ(m) and conditional distribution on the data f(d|m),
find the posterior distribution q(m|d):

q(m|d) = f(d|m)ρ(m)
f(d)

or
q(m|d) ∝ f(d|m)ρ(m)

The mean of q(m|d) is the MAP estimate and the variance q(m|d) gives uncertainty
in the estimates.



Multivariate Gaussian Distribution

Given
• prior distribution m ∼ N (m0,Cm)
• conditional data distribution d|m ∼ N (G(m),Cd)

Bayes Rule

q(m|d) ∝ exp
{
−1/2(((d−G(m))T C−1

d (d−G(m)) + (m−m0)T C−1
m (m−m0))

}



MAP Parameter Estimates

Gauss-Newton

mk+1 = mk +
(
JT

k C−1
d Jk + C−1

m

)−1 (
JT

k C−1
d (d−G(mk))−C−1

m (mk −m0)
)

Assumes:

• Good estimate m0

• G(m) is differentiable near mk

• J is available

• Hessian H ≈ JT J



Posterior Sampling

MCMC

• use Metropolis Hastings algorithm to sample

• create a Markov Chain that doesn’t have memory

• reduce bias in m0 by burning in

• reduce autocorrelation by skipping

Guaranteed to converge to posterior however, for large number of parameters, efficiency
is a limiting factor.



Neural Operator Estimate G−1

• Find a surrogate operator G−1 such that m = G−1(d− ε)

• Universal approximation theorem: a feed-forward network with
a single hidden layer having a finite number of artificial neurons
can approximate any continuous function

• Recent advances in seismic imaging, electrical impedance to-
mography, for example



Supervised Learning

• With a good understanding of the probability distribution of
m, generate synthetic data using the forward model

• Allows us to get beyond real-world data collecting and usage
limitations, and generate as much data as we need



Synthetic Training Data Sets

Two approaches to generating synthetic training data:

1. Bayesian Prior sampling

m ∼ N (m0,Cm)

2. Rejection Posterior sampling

q(m|d) ∝ exp
{
−1/2((d−G(m))TC−1

d (d−G(m)))
}



Rejection Sampling

1. Choose m from a proposal distribution g(m) e.g.

exp
{
−1/2(εTC−1

d ε)
}
, ε = 0,Cd = I

2. Choose constant c and reject choice m in 1. if

sup
m
f(m)/g(m) < c

where f(m) is the target distribution e.g.

exp
{
−1/2((d−G(m))TC−1

d (d−G(m)))
}



Recovering subsurface frontier

u(x) =
∫ b
a

log (x− w)2 +H2

(x− w)2 + (H − z(w))2 dw
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Inverse Problem

u = G(z) + ε

• ε ∼ N (0, σ2
dI), u ∼ N (0,Cu)

• Cu(w,w′) = σ2
uexp {−1/2(w − w′)2}

• ε,u ∈ R15

• z ∈ R100



MAP Estimate

σd = 0.1, σu = 1
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Neural Network

• Multilayer perceptron - 3 layers

• Adam algorithm optimizer

• 1000 synthetic training data, 20% test/train split



NN Operator Estimate - Prior sampling
σd = 0.1, σu = 1
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NN Operator Estimate - Posterior sampling
σd = 0.1, σu = 1
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Comparison of NN Operator Estimates
σd = 0.1, σu = 1
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Comparison of MAP and NN Operator Estimates
σd = 0.1, σu = 1
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Comparison of MAP and NN Operator Estimates
σd = 0.1, σu = 2.5
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Comparison of MAP and NN Operator Estimates
σd = 0.1, σu = 0.5
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Summary and Conclusions
• Successful learning of inverse operators for sufficiently large training data
sets has been achieved in seismic imaging, electrical impedance tomography
among other applications

• Here we experiment with sampling strategies that create a synthetic data
set for a nonlinear ill-posed inverse problem
– Synthetic training data sampled uniformly could not recover the

frontier between two densities
– Sampling the prior recovered the frontier, and is noisy
– Posterior sampling, using rejection, slightly improved the recovery

found with prior sampling
– Choice of σz in the sampling strategy significantly impacted quality of

the results from all methods
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