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Near subsurface imaging

• Landfill investigation
• Mapping and monitoring of groundwater pollution
• Determination of depth to bedrock
• Locating sinkholes, cave systems, faults and mine shafts
• Landslide assessments
• Buried foundation mapping



Boise Hydrogeophysical Research Site

Field laboratory about 10 miles from downtown Boise



Near subsurface imaging with electromagnetic waves

Electrical Resistivity Tomography Ground Penetrating Radar



Ground Penetrating Radar (GPR)

Damped Wave: ε
∂2E

∂t2
+ σ

∂E

∂t
= 1
µ
∇2E + f

• Radar signals f transmitted into the ground and energy that is
reflected back to the surface is recorded.

• If there’s a contrast in properties between adjacent material proper-
ties (permittivity ε, permeability µ and conductivity σ) a proportion
of the electromagnetic pulse will be reflected back.

• Subsurface structures are imaged by measuring the amplitude and
travel time of this reflected energy.



Electrical Resistivity Tomography (ERT)

Diffusion: −∇ · σ∇φ = ∇ · Js

• Current is passed through the ground via outer electrodes Js and
potential difference φ is measured between an inner pair of electrodes.

• Only responds to variability in electrical resistivity ρ = 1/σ exhibited
by earth materials.

• ERT data must be inverted to produce detailed electrical structures
of the cross-sections below the survey lines.



Forward vs Inverse Modeling

Forward Inverse

ε
∂2E

∂t2
+ σ

∂E

∂t
= 1
µ
∇2E + f Given ε, µ, σ Given E

Solve for E Solve for ε, µ, σ
−∇ · 1/ρ∇φ = ∇ · Js Given ρ Given φ

solve for φ solve for ρ



Nonlinear regression

Newton’s method for F (m) = d

mk+1 = mk + J−1(mk)(F (mk)− d)
= mk +4m

where Jij = ∂Fi
∂mj

. We focus on the linear problem

J(mk)4m = F (mk)− d
Gm = d



Full Disclosure....

This work is motivated by inverting both damped wave and diffusion
equation simultaneously (Joint Inversion). However, we have only obtained
results for simplified equations:

u′′ = f

u′′ + b2u = f



Inverse Problems

Consider solving problems of the form:

Gm = d,
• G ∈ Rm×n - mathematical model

• d ∈ Rm - observed data

• m ∈ Rn- unknown model parameters

G cannot be resolved by the data d because it is ill-conditioned

det(GTG) = “large"

and the solution m = (GTG)−1d is not possible.



Regularization

mLp = argminm
{
‖Gm− d‖22 + λ||Lp(m−m0)||22

}
m0 - initial estimate of m
Lp - typically represents the first (p = 1) or second derivative (p = 2)
λ - regularization parameter

This gives estimates

mLp = m0 + (GTG + λLTp Lp)−1GTd



Choice of λ

Methods:
L-curve, Generalized Cross Validation (GCV) and Morozov’s Discrepancy
Principle, UPRE, χ2 method1...

• λ large → constraint: ‖Lp(m−m0)||22 ≈ 0

mLp = argminm
{
‖Gm− d‖22 + λ||Lp(m−m0)||22

}
• λ small → problem may stay ill-conditioned

mLp = m0 + (GTG + λLTp Lp)−1GTd

1Mead et al, 2008, 2009, 2010, 2016



Choice of Lp

mLp = argminm
{
‖Gm− d‖22 + λ||Lp(m−m0)||22

}
L0 = I - requires good initial estimate m0, otherwise may not
regularize the problem.

L1 - requires first derivative estimate, could be less information than
m0 (just changes in m0).

L2 - requires second derivative estimate, leaves more degrees of
freedom than first derivative so that data has more opportunity to
inform changes in parameter estimates.



Joint Inversion as Regularization

m12 = argminm
{
‖G1m− d1‖22 + ||G2m− d2||22

}
Objective function can be written∥∥∥∥∥

[
G1
G2

]
[m]−

[
d1
d2

]∥∥∥∥∥
2

2
≡ ‖G12m− d12‖22

Goal: Improve condition number

κ(G12) < κ(G1), κ(G2)

where κ(G) = σmax(G)
σmin(G)



Singular Value Decomposition (SVD)

G12 = UΣVT →m12 =
n∑
i=1

UT
·,id12

σi
V·,i

Truncated SVD (with decomposition on appropriate matrix)

m1 =
k1∑
i=1

UT
·,id1

σi
V·,i, m2 =

k2∑
i=1

UT
·,id2

σi
V·,i, m12 =

l∑
i=1

UT
·,id12

σi
V·,i

Goal: Keep as many singular values as possible

l >> k1, k2



Green’s Functions

Let LA = LA(t) be a linear differential operator. Then the corresponding
Green’s function KA(t, s) satisfies

LAKA(t, s) = δ(t− s), (1)

where δ denotes the delta function, a generalized function:



Green’s Function solutions of differential equations

Given the Green’s function, we can find the solution to the inhomogeneous
equation LAu(t) = f(t):

u(t) =
∫

Ω
KA(t, s)f(s)ds.

Forward problem: Given f , find u; Inverse problem: Given u, find f

Conditioning of the inverse problem depends on the forward operator
A : H → HA

Ah(t) ≡
∫

Ω
KA(t, s)h(s)ds



Singular Value Expansion (SVE)

If A is compact

A =
∞∑
k=1

σkψk ⊗ φk

where {φk} ⊂ H and {ψk} ⊂ HA are orthonormal and {σk} are the
singular values of A. Thus

Ah =
∞∑
k=1

σk〈φk, h〉Hψk

or Aφk = σkψk for all k.



Singular Values

Adjoint A∗ : HA → H defined by 〈Ah, hA〉HA
= 〈h,A∗hA〉H

A∗ =
∞∑
k=1

σkφk ⊗ ψk

Singular values of A are
√
eigenvalues of A∗A : H → H:

A∗Aφ = σ2φ

yields {(σk, φk)}∞k=1



Least Squares

‖Ah− f‖2HA

has solution
h = A†f =

∞∑
k=1

〈ψk, f〉HA

σk
φk

Condition number: σ1/σr; but as r →∞, σr → 0.

Decay rate q: σk(A) decays like k−q

Decay rate of singular values allow us to classify model conditioning



Decay rate example

Consider A : H → HA with H = HA = L2(0, 1)

Ah(t) =
∫ t

0
h(s)ds.

Solve A∗Aφ = σ2φ for σ and φ. This problem is equivalent to

λφ′′ + φ = 0, with φ(1) = φ′(0) = 0.

The singular functions and values are

φk(t) = c1 cos 2k − 1
2 πt and σk = 2

(2k − 1)π , k ∈ N.



Decay rate example

semi-log log-log



Tikhonov Operator

Tλ : H → HA ×H is defined by

Tλh = (Ah,
√
λh)

where HA ×H = {(hA, h) : hA ∈ HA, h ∈ H} with inner product

〈(hA,1, h1), (hA,2, h2)〉HA×H = 〈hA,1, hA,2〉HA
+ 〈h1, h2〉H .



Tikhonov regularization
We minimize

‖Tλh− (f, 0)‖2HA×H = ‖Ah− f‖2HA
+ λ ‖h‖2H .

Normal equations2

T ∗Th = T ∗(f, 0)

T ∗(Ah,
√
λh) = T ∗(f, 0)

A∗Ah+ λh = A∗f +
√
λ · 0

(A∗A+ λI)h = A∗f.

2Gockenbach, 2015



Pseudoinverse

Generalized inverse operator for the modified least squares problem is

A†λ = (A∗A+ λI)−1A∗ =
∞∑
k=1

σk
σ2
k + λ

φk ⊗ ψk.

Notice that
σk

σ2
k + λ

→ 0, as k →∞

and λ restricts the solution space.



Joint Inversion

‖Ah− f‖2HA
+ ‖Bh− g‖2HB

with A : H → HA and B : H → HB. Joint operator:

C : H → HA ⊕HB = {(hA, hB) : hA ∈ HA, hB ∈ HB}

so that
Ch = (Ah⊕B) , h ∈ H

Continuous analog to stacking matrices



Joint Operator Example

Define H = L2 (0, 2π) and HA = HB = R

Ah =
∫ 2π

0
h(y)δ(y − 5)dy and Bh =

∫ 2π

0
h(y)δ(y − 7)dy.

Then C : H → HA ⊕HB is given by

Ch = (Ah,Bh) =
(∫ 2π

0
h(y)δ(y − 5)dy,

∫ 2π

0
h(y)δ(y − 7)dy

)
,

a parametric curve in the space HA ⊕HB = R2.



Joint Operator Example, con’t

Consider S = {cos kx : k ∈ R, x ∈ [0, 2π]} ⊂ H, then

C(cos kx) =
(∫ 2π

0
cos(ky)δ(y − 5)dy,

∫ 2π

0
cos(ky)δ(y − 7)dy

)
= (cos(k · 5), cos(k · 7)) .

with image [−1, 1]× [−1, 1].



Joint Operator Example

Parametric curve defined by C(cos kx) for k ∈ [−5, 5]



Joint Singular Values

Adjoint C∗ : HA ⊕HB → H

C∗ (hA, hB) = A∗hA +B∗hB.

so that

σ2φ = C∗Cφ

= C∗ (Aφ,Bφ)
= A∗Aφ+B∗Bφ. (2)



Galerkin method for SVE

A(n) approximates A with orthonormal bases {qi(s)}ni=1 and {pj(t)}nj=1

a
(n)
ij = 〈qi, Apj〉

= 〈qi, 〈KA, pj〉〉

=
∫

Ωs

∫
Ωt

qi(s)KA(s, t)pj(t)dtds. (3)

so that
A(n) = U (n)Σ(n)

(
V (n)

)T
with Σ(n) = diag

(
σ

(n)
1 , σ

(n)
2 , . . . σ

(n)
n

)



Convergence of Galerkin Method
Define (

∆(n)
A

)2
= ‖KA‖2 − ‖A(n)‖2F

=
∞∑
i=1

σ2
i −

n∑
i=1

(σ(n)
i )2.

Then the following hold for all i and n, independent of the convergence of
∆(n)
A to 0: 3

1. σ(n)
i ≤ σ(n+1)

i ≤ σi

2. 0 ≤ σi − σ(n)
i ≤ ∆(n)

A

3Hansen 1988, Renaut et al 2016



Convergence of Galerkin method for Joint SVE

Define

C(n) =
[
A(n)

B(n)

]
and

(
∆(n)
C

)2
=
∞∑
i=1

σi(C)2 −
n∑
i=1

σi(C(n))2.

Expanding(
∆(n)
C

)2
= 〈KA,KA〉+ 〈KB,KB〉 − ‖A(n)‖2F − ‖B(n)‖2F
= ‖KA‖2 − ‖A(n)‖2F + ‖KB‖2 − ‖B(n)‖2F

=
(
∆(n)
A

)2
+
(
∆(n)
B

)2
. (4)

Thus if limn→∞(∆(n)
A )2 = 0 and limn→∞(∆(n)

B )2 = 0 the singular values
of C are accurately approximated.



Special case: Self-Adjoint Operator

Use singular functions in Galerkin method

a
(n)
ij =〈φj , Aφi〉 (5)

=〈φj , σiφi〉 (6)

=
{
σi i = j

0 i 6= j
(7)

then
A(n) = Σ(n)

A and B(n) = Σ(n)
B



Joint Singular Values for Self-Adjoint Operator

C(n) =
[
A(n)

B(n)

]
gives

(
C(n)

)T (
C(n)

)
=
(
Σ(n)
A

)2
+
(
Σ(n)
B

)2

so that
σi
(
C(n)

)
=
√
σi
(
A(n))2 + σi

(
B(n))2



Joint Singular Value Example

LAu = −u′′, u(0) = u(π) = 0,
LBu = u′′ + b2u, u(0) = u(π) = 0, and b /∈ Z

Green’s functions:

KA =


1
π (π − x) y, 0 ≤ y ≤ x ≤ π,
1
π (π − y)x, 0 ≤ x ≤ y ≤ π.

KB =

−
sin(by) sin[b(π−x)]

b sin(bπ) , 0 ≤ y ≤ x ≤ π,
− sin(bx) sin[b(π−y)]

b sin(bπ) , 0 ≤ x ≤ y ≤ π.



Example - Individual Singular Values

σk(A(200)) = 1
k2 σk(B(200)) = 1

k2+π2



Example - Joint Singular Values

σk(C(200)) =
√( 1

k2

)2 +
(

1
k2+22

)2



Example - Joint Singular Values

σk(C(200)) =
√( 1

k2

)2 +
(

1
k2+102

)2
σk(C(200)) =

√( 1
k2

)2 +
(

1
k2+0.12

)2



Conclusions

We suggest using Green’s function solutions of differential equations to quantify
how combining different types of data in a joint inversion improves conditioning
of individual inverse problems.

• This analysis required us to extend the following to joint inversion:

– Tikhnov regularization in a continuous domain

– Singular Value Expansion (SVE)

– Convergence of the Galerkin method to approximate the SVE

• If the individual operators are both self-adjoint, we found an expression for
the joint singular values in terms of the individual singular values.
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