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Outline

e Inverse Methods

Near subsurface imaging of the Earth
e FElectrical Resistivity Tomography using Tikhonov regularization

— Regularization informed by structural constraints

Assessing effectiveness of combining different data types

Results from combining Electrical Resistivity and Ground Penetrating Radar data




Inverse Problems

Gm=d

o G € R™*™ . mathematical model

e d € R™ - observed data

e m € R"- unknown model parameters




Least squares estimates

ms = argmin ||Gm — d||3
m
If G has linearly independent columns

m; = (GTG)'GTd

In many practical applications G is rank deficient.




Regularization

my,, = argmin {|Gm — d[3 + a2/ Ly (m — mo) 3}

my - initial estimate of m
L, - typically represents the first (p = 1) or second derivative (p = 2)
« - regularization parameter

This gives estimates

mLp =my + (GTG —+ OZQLZ;LP)_lGTd




Choice of regularization parameter

Methods: L-curve, Generalized Cross Validation (GCV) and Morozov's Discrepancy
Principle, UPRE, x? method®.

e « large — argmin||Ly(m — my)||3
m

L,m=~0, ie. my,, is smooth
e asmall » (GTG + a2L;‘,FLp)_1 DNE

problem may stay ill-conditioned

'Mead et al, 2008, 2009, 2010, 2016




Choice of L,

my, = arg min { | Gm — d|3 + o[, (m — mo) |3}

Lo(=1I) - requires good initial estimate my, otherwise may not regularize the
problem.

L1 - requires first derivative estimate Limy, i.e. changes in mg, which is less
information than my.

Ly - requires Lomy, leaves more degrees of freedom than first derivative so that
data has more opportunities to inform changes in parameter estimates.




Near subsurface imaging

Boise Hydrogeophysical Research Site (BHRS)

e Field laboratory on a gravel bar ad-
jacent to the Boise River, 15 km
southeast of downtown Boise.

e Consists of coarse cobble and sand.
Braided stream fluvial deposits over-
lie a clay layer at about 20 m depth.

Difference in retention properties in a lenticular sand feature yields significantly different
geophysical properties.




Electrical Resistivity Tomography (ERT)

e 2D grid of observations provides a
Seneel Inmetivey e 2.5-D inverted model that empha-

€1/C2 = Current electode Rasistivity metor

sizes the sand lenticular feature.

e BHRS survey consisted of 12 elec-
trodes spaced 1 meter apart acquired
with a dipole-dipole configuration.

BHRS survey acquired at surface when subsurface achieved saturation.




Electrical Resistivity Model
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- electric potential

0- i - current intensity

s+ - source-sink position.

Model parameters: conductivity o or resistivity p = 1/0
Observed data: apparent resitivity %‘35

IPidlisecky and Knight, 2008




Simulated ERT results

min {[d - G(o)[3 + o?|Lyer|3}
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Structural Constraint

min {|[d ~ G(0)|3 + o’ [RLyo |3}

R = diag(ry,...,7), s =0o0r13
R
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3Hetrick and M., 2018




Constraint - Ground Penetrating Radar (GPR)

e GPRsurvey at BHRS acquired across
center of gridded ER survey.

e GPR sampled line collinear with ER
survey.

e GPR derived boundary gives con-
straint for inverting the ER dataset.




Boise Hydrogeophysical Research Site Results

e ER data inverted for resistivity

e Regularization in the form of subsurface boundary constraint inferred from GPR

data
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Summary - Regularization with Structural Constraints
e Additional data can be used to inform the regularization operator

— Including initial parameter estimates, or estimates of their first or second
derivatives, can always lead to a well-posed problem.

— Additional derivative information requires less knowledge than initial param-
eter estimates.

— Relies on secondary data processing or practitioner interpretation of data.




Assessing Effectiveness of Constraints - Singular Value Expansion

min |[d - Aa}

with solution -
= Afp = Z M¢k
k=1 Ok
Yk, ¢ orthonormal singular functions
op —0as k — o0

e Conditioning measured by decay rate of singular values

— e.g. decay rate ¢ = o, decays like k74




Singular Values of Tikhonov Operator

. 2 2
min |4 — Az + o? |22

with solution

so that

and « restricts the solution space?.

*Gockenbach, 2015




Additional Data as Constraints

ldi — Az|3 + ||d2 — Ba|l3
Singular values satisfy
A*Ap+ B*Bop=0%p or C*Co=0c2¢

and can be approximated with a Galerkin method e.g. A, agl) = (qi, Apj), where
{ai(s)}i=y and {p;(t)}j_, are orthonormal bases so that

)

A® = ympm (V<">)T, ) = diag (o}, of", .. o)

A®)
(n) —
=

Define

B(®)




Special case: Self-Adjoint Operators

Use singular functions in Galerkin method

a(;b) = (), Adi) = (¢;,0ihi) = { gi :éj
then
A =5 and B = w2
so that
(o) () = () + o)
and

0 (CM) = o (A0)? + 7 (B))”




Summary - Combining data

e Simultaneously inverting multiple data sets will necessarily reduce the amount of
regularization necessary to resolve ill-posedness.

— However, adding data may not improve decay rate in individual inversions.

e Singular values from theoretical models indicate properties and or situations

where different data types most effectively regularize each other.




Complementary data in Subsurface Imaging

Ground Penetrating Radar

e High frequency

e Conductivity through
attenuation and reflection

shot gather with attenuation
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GPR Model
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O- 5 u-electric field, e-permittvity

p-constant permeability

Sw-source wavelet

Model parameters: conductivity ¢ and permitivity €
Observed data: electric current Mu

5Yee, 1966; Berenger, 1994, Ernst et al., 2007




Inverting ER and GPR jointly - full physics

E=Ew +Ea

€ e+ Ae
0+ 0+ a(byAoy + bycAoyc)




Combining updates
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Data weights
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Inverted images - full physics
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Inverted cross section - full physics

cross section z = Im
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Summary - Joint inversion

e We have developed a joint inversion algorithm to solve for both permittivity €
and conductivity o using complementary GPR and ER data.

— Full physics that describe the data were incorporated into the inversion.
e Data weights capture the sensitivities of the different physics during the inversion.

e Features were recovered that neither GPR or ER can individually resolve.




Future Work
e Use singular values to quantify the value of combining different data types

— Compare decay rate of singular values of individual operators to those of
joint operators.

e |dentify singular values of
— Green's function solutions of wave and diffusion equations.

— Covariance matrices that can be used to weight Tikhonov regularization
operator.

— Cross-gradient operator used to identify parameters with similar structure.
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