Combining Data for Improved Modeling

Jodi Mead Department of Mathematics Diego Domenzain

Department of Geosciences

James Ford Clearwater Analytics John Bradford Department of Geophysics Colorado School of Mines

Thanks to: NSF DMS-1418714

Outline

- Inverse Methods
- Near subsurface imaging of the Earth
- Electrical Resistivity Tomography using Tikhonov regularization
 - Regularization informed by structural constraints
- Assessing effectiveness of combining different data types
- Results from combining Electrical Resistivity and Ground Penetrating Radar data

Inverse Problems

$\mathbf{G}\mathbf{m}=\mathbf{d}$

- $\mathbf{G} \in R^{m \times n}$ mathematical model
- $\mathbf{d} \in R^m$ observed data
- $\mathbf{m} \in R^n$ unknown model parameters

121

Least squares estimates

$$\mathbf{m}_{\mathsf{LS}} = \underset{\mathbf{m}}{\operatorname{arg\,min}} \|\mathbf{Gm} - \mathbf{d}\|_2^2$$

If \mathbf{G} has linearly independent columns

$$\mathbf{m}_{\rm LS} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{d}$$

In many practical applications ${\bf G}$ is rank deficient.

Regularization

$$\mathbf{m}_{\mathbf{L}_p} = \operatorname*{arg\,min}_{\mathbf{m}} \left\{ \|\mathbf{G}\mathbf{m} - \mathbf{d}\|_2^2 + \alpha^2 ||\mathbf{L}_p(\mathbf{m} - \mathbf{m}_0)||_2^2 \right\}$$

- \mathbf{m}_0 initial estimate of \mathbf{m}
- \mathbf{L}_p typically represents the first (p=1) or second derivative (p=2)
- α $\,$ regularization parameter $\,$

This gives estimates

$$\mathbf{m}_{\mathbf{L}_p} = \mathbf{m}_0 + (\mathbf{G}^T \mathbf{G} + \alpha^2 \mathbf{L}_p^T \mathbf{L}_p)^{-1} \mathbf{G}^T \mathbf{d}$$

Choice of regularization parameter

Methods: L-curve, Generalized Cross Validation (GCV) and Morozov's Discrepancy Principle, UPRE, χ^2 method¹.

•
$$\alpha | \text{argmin} \| \mathbf{L}_p(\mathbf{m} - \mathbf{m}_0) \|_2^2$$

 $\mathbf{L}_p \mathbf{m} pprox \mathbf{0}$, i.e. $\mathbf{m}_{\mathbf{L}_p}$ is smooth

•
$$\alpha \text{ small} \rightarrow (\mathbf{G}^T \mathbf{G} + \alpha^2 \mathbf{L}_p^T \mathbf{L}_p)^{-1} \text{ DNE}$$

problem may stay ill-conditioned

¹Mead et al, 2008, 2009, 2010, 2016

Choice of L_p

$$\mathbf{m}_{\mathbf{L}_p} = \operatorname*{arg\,min}_{\mathbf{m}} \left\{ \|\mathbf{G}\mathbf{m} - \mathbf{d}\|_2^2 + \alpha^2 ||\mathbf{L}_p(\mathbf{m} - \mathbf{m}_0)||_2^2 \right\}$$

 $\mathbf{L}_0(=\mathbf{I})$ - requires good initial estimate $\mathbf{m}_0,$ otherwise may not regularize the problem.

 ${\bf L}_1$ - requires first derivative estimate ${\bf L}_1{\bf m}_0$, i.e. changes in ${\bf m}_0$, which is less information than ${\bf m}_0.$

 L_2 - requires L_2m_0 , leaves more degrees of freedom than first derivative so that data has more opportunities to inform changes in parameter estimates.

Near subsurface imaging

Boise Hydrogeophysical Research Site (BHRS)

- Field laboratory on a gravel bar adjacent to the Boise River, 15 km southeast of downtown Boise.
- Consists of coarse cobble and sand. Braided stream fluvial deposits overlie a clay layer at about 20 m depth.

Difference in retention properties in a lenticular sand feature yields significantly different geophysical properties.

Electrical Resistivity Tomography (ERT)

- 2D grid of observations provides a 2.5-D inverted model that emphasizes the sand lenticular feature.
- BHRS survey consisted of 12 electrodes spaced 1 meter apart acquired with a dipole-dipole configuration.

BHRS survey acquired at surface when subsurface achieved saturation.

Electrical Resistivity Model

$$-\nabla \cdot \sigma \nabla \varphi = \mathbf{i} (\delta(x - s_+) - \delta(x - s_-))^2$$

arphi - electric potential **i** - current intensity s_{\pm} - source-sink position.

Model parameters: conductivity σ or resistivity $\rho = 1/\sigma$ **Observed data:** apparent resitivity $\frac{2\pi \bigtriangleup \varphi}{i} \kappa$

¹Pidlisecky and Knight, 2008

Simulated ERT results

$$\min_{\boldsymbol{\sigma}} \left\{ \|\mathbf{d} - \mathbf{G}(\boldsymbol{\sigma})\|_2^2 + \alpha^2 \|\mathbf{L}_p \boldsymbol{\sigma}\|_2^2 \right\}$$

Inverted resistivity with L_1

man and the state of the second se

Inverted resistivity with L_2

7

Structural Constraint

³Hetrick and M., 2018

Constraint - Ground Penetrating Radar (GPR)

- GPR survey at BHRS acquired across center of gridded ER survey.
- GPR sampled line collinear with ER survey.
- GPR derived boundary gives constraint for inverting the ER dataset.

Boise Hydrogeophysical Research Site Results

- ER data inverted for resistivity
- Regularization in the form of subsurface boundary constraint inferred from GPR data

Summary - Regularization with Structural Constraints

- Additional data can be used to inform the regularization operator
 - Including initial parameter estimates, or estimates of their first or second derivatives, can always lead to a well-posed problem.
 - Additional derivative information requires less knowledge than initial parameter estimates.
 - Relies on secondary data processing or practitioner interpretation of data.

Assessing Effectiveness of Constraints - Singular Value Expansion

$$\min_{x} \|d - Ax\|_2^2$$

with solution

$$x = A^{\dagger}b = \sum_{k=1}^{\infty} \frac{\langle \psi_k, b \rangle}{\sigma_k} \phi_k$$

 $\psi_k \text{, } \phi_k$ orthonormal singular functions $\sigma_k \to 0 \text{ as } k \to \infty$

• Conditioning measured by decay rate of singular values

– e.g. decay rate
$$q \Rightarrow \sigma_k$$
 decays like k^{-q}

Singular Values of Tikhonov Operator

$$\min_{x} \|d - Ax\|_{2}^{2} + \alpha^{2} \|x\|_{2}^{2}$$

with solution

$$x = A_{\alpha}^{\dagger} b = \sum_{k=1}^{\infty} \frac{\sigma_k}{\sigma_k^2 + \alpha^2} \langle \psi_k, b \rangle \phi_k$$

so that

$$rac{\sigma_k}{\sigma_k^2+lpha^2}
ightarrow 0, \,\, {\rm as}\,\, k
ightarrow\infty$$

and α restricts the solution space⁴.

=

⁴Gockenbach, 2015

Additional Data as Constraints

$$||d_1 - Ax||_2^2 + ||d_2 - Bx||_2^2$$

Singular values satisfy

$$A^*A\phi + B^*B\phi = \sigma^2\phi$$
 or $C^*C\phi = \sigma^2\phi$

and can be approximated with a Galerkin method e.g. $A^{(n)}$, $a_{ij}^{(n)} = \langle q_i, Ap_j \rangle$, where $\{q_i(s)\}_{i=1}^n$ and $\{p_j(t)\}_{j=1}^n$ are orthonormal bases so that

$$A^{(n)} = U^{(n)} \Sigma^{(n)} \left(V^{(n)} \right)^T, \quad \Sigma^{(n)} = \text{diag} \left(\sigma_1^{(n)}, \sigma_2^{(n)}, \dots \sigma_n^{(n)} \right)$$

Define

$$C^{(n)} = \begin{bmatrix} A^{(n)} \\ B^{(n)} \end{bmatrix}$$

Special case: Self-Adjoint Operators

Use singular functions in Galerkin method

$$a_{ij}^{(n)} = \langle \phi_j, A\phi_i \rangle = \langle \phi_j, \sigma_i \phi_i \rangle = \begin{cases} \sigma_i & i = j \\ 0 & i \neq j \end{cases}$$

then

$$A^{(n)} = \Sigma_A^{(n)} \quad \text{and} \quad B^{(n)} = \Sigma_B^{(n)}$$

so that

$$\left(C^{(n)}\right)^T \left(C^{(n)}\right) = \left(\Sigma_A^{(n)}\right)^2 + \left(\Sigma_B^{(n)}\right)^2$$

and

$$\sigma_i\left(C^{(n)}\right) = \sqrt{\sigma_i\left(A^{(n)}\right)^2 + \sigma_i\left(B^{(n)}\right)^2}$$

7

Summary - Combining data

- Simultaneously inverting multiple data sets will necessarily reduce the amount of regularization necessary to resolve ill-posedness.
 - However, adding data may not improve decay rate in individual inversions.
- Singular values from theoretical models indicate properties and or situations where different data types most effectively regularize each other.

Complementary data in Subsurface Imaging

Ground Penetrating Radar

- High frequency
- Conductivity through attenuation and reflection

Electrical Resistivity

- Low frequency
- Directly sensitive to conductivity

GPR Model

$$\varepsilon \ddot{u} + \sigma \dot{u} = \frac{1}{\mu} \nabla^2 u + s_w{}^5$$

u-electric field, ε -permittvity μ -constant permeability s_w -source wavelet

Model parameters:conductivity σ and permitivity ϵ Observed data:electric current Mu

⁵Yee, 1966; Berenger, 1994, Ernst et al., 2007

Inverting ER and GPR jointly - full physics

man and the state of the second se

$E=E_w+E_{dc}$

$$\varepsilon \leftarrow \varepsilon + \Delta \varepsilon$$

$$\sigma \leftarrow \sigma + \alpha \left(b_w \Delta \sigma_w + b_{dc} \Delta \sigma_{dc} \right)$$

Combining updates

Data weights

Inverted cross section - full physics

all so the south second in the

Summary - Joint inversion

- We have developed a joint inversion algorithm to solve for both permittivity ϵ and conductivity σ using complementary GPR and ER data.
 - Full physics that describe the data were incorporated into the inversion.
- Data weights capture the sensitivities of the different physics during the inversion.
- Features were recovered that neither GPR or ER can individually resolve.

Future Work

- Use singular values to quantify the value of combining different data types
 - Compare decay rate of singular values of individual operators to those of joint operators.
- Identify singular values of
 - Green's function solutions of wave and diffusion equations.
 - Covariance matrices that can be used to weight Tikhonov regularization operator.
 - Cross-gradient operator used to identify parameters with similar structure.

Thank you!

Active the second the second in the

Jodi Mead Mathematics Department Boise State University jmead@boisestate.edu

R