χ^2 Test for TV regularization parameter selection

Jodi Mead Department of Mathematics Boise State University

This work is supported by NSF-DMS-1043107

Inverse Problem

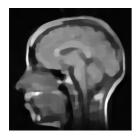
$$\mathbf{y} = \mathbf{A}\mathbf{x} + \boldsymbol{\epsilon}$$

$$\mathbf{y}\in\mathbb{R}^m$$
, $\mathbf{A}\in\mathbb{R}^{m imes n}$, $\mathbf{x}\in\mathbb{R}^n$, $\mathbb{E}(\epsilon)=\mathbf{0}$, $\mathsf{cov}(\epsilon)=\sigma^2\mathbf{I}$

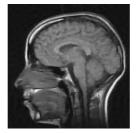
Total Variation minimization

$$\hat{\mathbf{x}}_{tv} \in \operatorname*{arg\,min}_{\mathbf{x}} \frac{\lambda}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \|\nabla\mathbf{x}\|_{1}$$

Choice of λ **example**



 $\lambda = 500$



 $\lambda = 50000$

 $\lambda = 500000$

TV regularization parameter selection

Approaches

- L-curve: no guarantee that norm of the data residual vs. the solution will be L-shaped.
- TV function viewed or approximated with a quadratic functional: Discrepancy principle*, Unbiased Predictive Risk Estimator (UPRE)**, Generalized Cross Validation (GCV)***.
- Stein's unbiased risk estimate (SURE)[†] that relies on degrees of freedom estimates in the predictive risk estimator.

^{*}Wen et. al, 2012; **Lin et. al, 2012; ***Liao et. al, 2009 [†]Deledalle et. al, 2014

Residual properties

$$\mathbb{E}(\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2) = m\sigma^2$$

suggests solving nonlinear equation

$$f(\lambda) = \|\mathbf{y} - \mathbf{A}\mathbf{x}(\lambda)\|_2^2 - m\sigma^2 = 0$$

for λ . However

$$\hat{f}(\lambda) = \|\mathbf{y} - \mathbf{A}\hat{\mathbf{x}}(\lambda)\|_2^2 - m\sigma^2$$

is biased so choosing λ by solving $\hat{f}(\lambda)=0$ leads to oversmoothing (Discrepancy principle).

Effective Degrees of Freedom (EDF)

Tikhonov regularization

$$\hat{\mathbf{x}}_{ls} \in \operatorname*{arg\,min}_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \alpha^{2} \|\mathbf{D}\mathbf{x}\|_{2}^{2}$$

gives ridge regression estimator

$$\hat{\mathbf{x}}_{ls} = (\mathbf{A}^T \mathbf{A} + \alpha^2 \mathbf{D}^T \mathbf{D})^{-1} \mathbf{A}^T \mathbf{y}.$$

Predictors are

$$\mathbf{A}\hat{\mathbf{x}}_{ls} = \mathbf{N}(\alpha)\mathbf{y}$$

 and^*

$$\mathbb{E}(\|\mathbf{y} - \mathbf{A}\hat{\mathbf{x}}_{ls}\|_2^2) = (m - \operatorname{tr} \mathbf{N}(\alpha))\sigma^2$$

*Hall et. al, 1987.

Degrees of Freedom in Nonlinear (TV) Regression

Tikhonov regularization term defines smoothing matrix $A\hat{\mathbf{x}}_{ls} = N\mathbf{y}$ while nonlinear smoothers (e.g. TV) have

$$\mathbf{A}\hat{\mathbf{x}}_{tv} = \delta(\mathbf{y}).$$

Degrees of freedom of δ are given by $\!\!\!\!\!\!^*$

$$df(\mathbf{A}\hat{\mathbf{x}}_{tv}) = \sum_{i=1}^{m} \operatorname{cov}((\hat{\mathbf{x}}_{tv})_i, \mathbf{y}_i) / \sigma^2$$

e. g. df $(\mathbf{A}\hat{\mathbf{x}}_{ls}) = \operatorname{tr}(\mathbf{N}).$

*Efron, 2004.

Degrees of Freedom for TV (generalized Lasso)*,**

$$\hat{\mathbf{x}}_{tv} \in \operatorname*{arg\,min}_{\mathbf{x}} \frac{\lambda}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \|\mathbf{D}\mathbf{x}\|_{1}$$

No assumptions on \mathbf{A} or \mathbf{D} :

$$df(\mathbf{A}\hat{\mathbf{x}}_{tv}) = \mathbb{E}[dim(\mathbf{A}(null(\mathbf{D}_{-\mathcal{A}})))], \quad \mathcal{A} = \{i : (\mathbf{D}\hat{\mathbf{x}}_{tv})_i \neq 0\}$$

If A is full rank, the number of non-zero predictors $\mathbf{D}\hat{\mathbf{x}}_{tv}$ is an unbaised estimate for $df(\mathbf{A}\hat{\mathbf{x}}_{tv})$.

*Tibshirani 2012;**Dossal 2013.

χ^2 Functional for TV

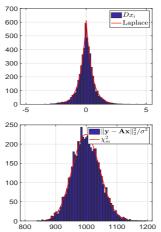
If $z_i \sim \text{Laplace}(\theta, \beta)$ all independent, then

$$\sum_{i=1}^{n} \frac{2|z_i - \theta|}{\beta} \sim \chi_{2n}^2.$$

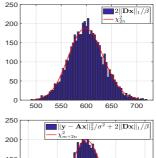
Since the TV functional is differentially Laplacian

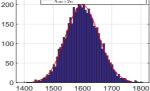
$$\frac{\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2}{\sigma^2} + \frac{2\|\mathbf{D}\mathbf{x}\|_1}{\beta} \sim \chi^2_{m+2n}$$

Histograms illustrating χ^2 Test for TV Functional



and the second second in the second sec





🛃 BOISE STATE UNIVERSITY

$$\chi^2$$
 Test for TV

$$\frac{\|\mathbf{y} - \mathbf{A}\hat{\mathbf{x}}_{tv}(\lambda)\|_2^2}{\sigma^2} + \frac{2\|\mathbf{D}\hat{\mathbf{x}}_{tv}(\lambda)\|_1}{\beta} \sim \chi^2_{m-df(\mathbf{A}\hat{\mathbf{x}}_{tv}(\lambda)) + df(\mathbf{D}\hat{\mathbf{x}}_{tv}(\lambda))}$$

Theorem

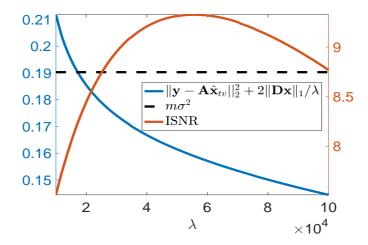
*Suppose that $(\mathbf{y} - \mathbf{A}\mathbf{x})_i \sim \mathcal{N}(0, \sigma)$ and $(\mathbf{D}\mathbf{x})_i \sim \text{Laplace}(\theta, \beta)$ with \mathbf{A} and \mathbf{D} full rank. Then

$$\frac{\|\mathbf{y} - \mathbf{A}\hat{\mathbf{x}}_{tv}(\lambda)\|_2^2}{\sigma^2} + \frac{2\|\mathbf{D}\hat{\mathbf{x}}_{tv}(\lambda)\|_1}{\beta} \sim \chi_m^2$$

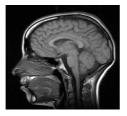
*Mead 2020

MRI BSNR = 40; χ^2 ISNR = 8.22; Max ISNR = 9.33

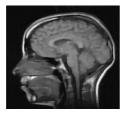
Real of the second the second the



Exact

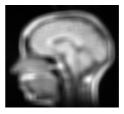


 χ^2 ISNR = 8.22



Restant Assessment Constant, I.A. or

 $\mathsf{BSNR} = 40$



 $\mathsf{Maximum}\ \mathsf{ISNR}=9.33$

Summary and Conclusions

- We have developed a framework for automatic and efficient selection of TV regularization parameters. The approach extends results on residuals and risk estimators, in particular
 - The new measure of risk involves the regularized residual which follows a χ^2 distribution.
 - The degrees of freedom can be estimated from recent results on degrees of freedom for generalized Lasso.
- The proposed TV regularization parameter selection method* requires a data noise estimate and solves the TV problem multiple times during an optimization, rather than guess and checking.

*Mead 2020