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Inverse Problem

y=Ax+¢€

y €ER™, A e R™" x € R", E(e) = 0, cov(e) = 0’1

Total Variation minimization

5 —
% € argmin Sy — Ax[l + [ Vx|




Choice of \ example

A = 50000 A = 500000




TV regularization parameter selection
Approaches

» L-curve: no guarantee that norm of the data residual vs. the solution will be
L-shaped.

= TV function viewed or approximated with a quadratic functional:
Discrepancy principle*, Unbiased Predictive Risk Estimator (UPRE)**,
Generalized Cross Validation (GCV)***.

= Stein’s unbiased risk estimate (SURE)' that relies on degrees of freedom
estimates in the predictive risk estimator.

*Wen et. al, 2012; **Lin et. al, 2012; ***Liao et. al, 2009
TDeledalle et. al, 2014




Residual properties

E(lly — Ax[3) = mo®
suggests solving nonlinear equation
fO) = lly — Ax(V)||3 —mo? =0

for A\. However
f) =y — Ax(\)||5 — mo®

is biased so choosing A by solving f(A) = 0 leads to oversmoothing (Discrepancy
principle).




Effective Degrees of Freedom (EDF)

Tikhonov regularization
s : — A 2 2 D 2
Xis € argmin [y — Ax|)z + o”||Dx|[3
X
gives ridge regression estimator
% = (ATA + o’DTD) ATy,

Predictors are
Af{ls = N(Oé)y

and*
E(lly — A%il3) = (m — trN(a))o?

*Hall et. al, 1987.




Degrees of Freedom in Nonlinear (TV) Regression

Tikhonov regularization term defines smoothing matrix AX;; = Ny while nonlinear

smoothers (e.g. TV) have
A)A(tv = 5(y)

Degrees of freedom of § are given by*

df (A%p,) = Y cov((%t)i, yi)/0”
i=1

e. g. df(A%;s) = tr(N).

*Efron, 2004.




Degrees of Freedom for TV (generalized Lasso)***

. A
%, € argmin - [ly — Ax|3 + [ Dx]l
X

No assumptions on A or D:
df (AXyy) = E[dim(A(null(D_4)))], A={i:(D%Xyw); #0}

If A is full rank, the number of non-zero predictors DXy, is an unbaised estimate for
df (AXyy).

*Tibshirani 2012;**Dossal 2013.




x? Functional for TV

If z; ~ Laplace(#, 3) all independent, then
Y T~ X
= B

Since the TV functional is differentially Laplacian

ly = Ax|l;  2iDxl o

2 /3 m—+2n

g




Histograms illustrating x? Test for TV Functional
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x? Test for TV

ly = A% (V2 | 2IDZMih - 2
3 B Xm—df(Af(m (A)+df (Dxty (X))

g

Theorem
*Suppose that (y — Ax); ~ N (0,0) and (Dx); ~ Laplace(d, 3) with A and D full
rank. Then

ly — AxwN[3 . 2Dxke(Mli 5
3 + B ~ Xm

a

*Mead 2020







MRI BSNR = 40; x* ISNR = 8.22; Max ISNR = 9.33
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Exact BSNR = 40




Summary and Conclusions

= We have developed a framework for automatic and efficient selection of TV
regularization parameters. The approach extends results on residuals and risk
estimators, in particular
— The new measure of risk involves the regularized residual which follows a
x? distribution.
— The degrees of freedom can be estimated from recent results on degrees of
freedom for generalized Lasso.
= The proposed TV regularization parameter selection method* requires a data
noise estimate and solves the TV problem multiple times during an optimization,
rather than guess and checking.

*Mead 2020




