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Inverse Problem

y = Ax + ε

y ∈ Rm, A ∈ Rm×n, x ∈ Rn, E(ε) = 0, cov(ε) = σ2I

Total Variation minimization

x̂tv ∈ arg min
x

λ

2 ‖y−Ax‖22 + ‖∇x‖1



Choice of λ example

λ = 500 λ = 50000 λ = 500000



TV regularization parameter selection
Approaches

• L-curve: no guarantee that norm of the data residual vs. the solution will be
L-shaped.

• TV function viewed or approximated with a quadratic functional:
Discrepancy principle∗ , Unbiased Predictive Risk Estimator (UPRE)∗∗,
Generalized Cross Validation (GCV)∗∗∗.

• Stein’s unbiased risk estimate (SURE)† that relies on degrees of freedom
estimates in the predictive risk estimator.

∗Wen et. al, 2012; ∗∗Lin et. al, 2012; ∗∗∗Liao et. al, 2009
†Deledalle et. al, 2014



Residual properties

E(‖y−Ax‖22) = mσ2

suggests solving nonlinear equation

f(λ) = ‖y−Ax(λ)‖22 −mσ2 = 0

for λ. However
f̂(λ) = ‖y−Ax̂(λ)‖22 −mσ2

is biased so choosing λ by solving f̂(λ) = 0 leads to oversmoothing (Discrepancy
principle).



Effective Degrees of Freedom (EDF)
Tikhonov regularization

x̂ls ∈ arg min
x

‖y−Ax‖22 + α2‖Dx||22

gives ridge regression estimator

x̂ls = (ATA + α2DTD)−1ATy.

Predictors are
Ax̂ls = N(α)y

and∗
E(‖y−Ax̂ls‖22) = (m− trN(α))σ2

∗Hall et. al, 1987.



Degrees of Freedom in Nonlinear (TV) Regression

Tikhonov regularization term defines smoothing matrix Ax̂ls = Ny while nonlinear
smoothers (e.g. TV) have

Ax̂tv = δ(y).

Degrees of freedom of δ are given by∗

df(Ax̂tv) =
m∑
i=1

cov((x̂tv)i,yi)/σ2

e. g. df(Ax̂ls) = tr(N).

∗Efron, 2004.



Degrees of Freedom for TV (generalized Lasso)∗,∗∗

x̂tv ∈ arg min
x

λ

2 ‖y−Ax‖22 + ‖Dx‖1

No assumptions on A or D:

df(Ax̂tv) = E[dim(A(null(D−A)))], A = {i : (Dx̂tv)i 6= 0}

If A is full rank, the number of non-zero predictors Dx̂tv is an unbaised estimate for
df(Ax̂tv).

∗Tibshirani 2012;∗∗Dossal 2013.



χ2 Functional for TV

If zi ∼ Laplace(θ, β) all independent, then
n∑
i=1

2|zi − θ|
β

∼ χ2
2n.

Since the TV functional is differentially Laplacian

‖y−Ax‖22
σ2 + 2‖Dx‖1

β
∼ χ2

m+2n



Histograms illustrating χ2 Test for TV Functional
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χ2 Test for TV

‖y−Ax̂tv(λ)‖22
σ2 + 2‖Dx̂tv(λ)‖1

β
∼ χ2

m−df(Ax̂tv(λ))+df(Dx̂tv(λ))

Theorem
∗Suppose that (y−Ax)i ∼ N (0, σ) and (Dx)i ∼ Laplace(θ, β) with A and D full
rank. Then

‖y−Ax̂tv(λ)‖22
σ2 + 2‖Dx̂tv(λ)‖1

β
∼ χ2

m

∗Mead 2020





MRI BSNR = 40; χ2 ISNR = 8.22; Max ISNR = 9.33
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Exact BSNR = 40

χ2 ISNR = 8.22 Maximum ISNR = 9.33



Summary and Conclusions
• We have developed a framework for automatic and efficient selection of TV

regularization parameters. The approach extends results on residuals and risk
estimators, in particular

– The new measure of risk involves the regularized residual which follows a
χ2 distribution.

– The degrees of freedom can be estimated from recent results on degrees of
freedom for generalized Lasso.

• The proposed TV regularization parameter selection method∗ requires a data
noise estimate and solves the TV problem multiple times during an optimization,
rather than guess and checking.

∗Mead 2020


