#### **Automatic Regularization Parameter Selections**

Jodi Mead Department of Mathematics Boise State University



This work is supported by NSF-DMS-1043107

# Outline

- The need for regularization (*Air quality data*)
- Automatic regularization parameter selection methods (1D benchmarch problems)
- $\chi^2$  tests for regularization parameter selection
  - Linear problems (Digital image reconstruction)
  - Nonlinear problems (Crosswell Tomography and Neural Networks)
  - Multiple regularization parameters (1D benchmark problem)
  - Total variation regularization (*MRI image reconstruction*)



Wildfire Smoke, July 2021



Courtesy of NASA Earth Observatory

Air Quality, Nampa, ID



Courtesy of United States Environmental Protection Agency (EPA)



### **Curve Fitting**





The Need for Regularization

Regularization alleviates issues with

- Overfitting data
- Ill-conditioned problems
- Ill-posed problems



## Least Squares

Fit data to polynomial

$$p(t) = c_n t^n + \ldots + c_1 t + c_0$$

where

$$\hat{\mathbf{c}} = \arg\min_{\mathbf{c}} \left\{ \sum_{i=1}^{m} (d_i - p(t_i))^2 \right\}$$
$$= (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{d}$$

## **Tikhonov Regularization**

$$\hat{\mathbf{c}} = \underset{\mathbf{c}}{\operatorname{arg\,min}} \left\{ \|\mathbf{d} - \mathbf{A}\mathbf{c}\|_{2}^{2} + \alpha^{2} \|\mathbf{L}\mathbf{c}\|_{2}^{2} \right\}$$
  
gives  $\hat{\mathbf{c}} = (\mathbf{A}^{T}\mathbf{A} + \alpha^{2}\mathbf{L}^{T}\mathbf{L})^{-1}\mathbf{A}^{T}\mathbf{d}.$ 

- ${\bf L}$  represents  ${\bf I}$  or a derivative operator
- $\alpha$  is the regularization parameter

# **Regularization Parameter Selection**

•  $\alpha$  "small"  $\Rightarrow$  data fitting

- Not possible for ill-conditioned problems

- $\alpha$  "large"  $\Rightarrow$  constrain the problem with  $\|\mathbf{L}\mathbf{c}\|_2^2\approx 0$ 
  - Derivative operator  ${\bf L}$  gives smooth estimates
  - Can regularize with an initial estimate  $\|\mathbf{c}-\mathbf{c}_0||_2^2$

the second second second

# **Digital Image Reconstruction**

- A represents convolution of a point spread function
- $\mathbf{A}^{-1}$  does not exist or is ill-conditioned
- E Additive noise.

## **Regularization Parameter Choices**

# small $\alpha$







large  $\alpha$ 



BOISE STATE UNIVERSITY

# **Automatic Regularization Parameter Selection Methods**

1. L-curve

Plot  $\|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}\|_2^2$  vs  $\|\mathbf{L}\hat{\mathbf{c}}\|_2^2$  for a range of  $\alpha$ , and choose  $\alpha$  that minimizes both.

- 2. Generalized Cross Validation (GCV) Leave out data and choose  $\alpha$  that minimizes prediction error in missing data.
- 3. Discrepancy principle Choose  $\alpha$  so that  $\|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}\|_2^2 < \delta$ ,  $\delta$  represents data noise.

## Maximum Likelihood Estimation (MLE)

$$\mathbf{d} = \mathbf{A}\mathbf{c} + \boldsymbol{\epsilon}, \ \ \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma \mathbf{I})$$

gives Likelihood function  $L(\mathbf{c}|\mathbf{d}) \propto e^{-1/2\sigma^2 \|\mathbf{d} - \mathbf{A}\mathbf{c}\|_2^2}$ 

$$\hat{\mathbf{c}} = \arg \max_{\mathbf{c}} \left\{ e^{-1/2\sigma^2 \|\mathbf{d} - \mathbf{Ac}\|_2^2} \right\}$$



**Residual properties** 

$$\mathbb{E}(\|\mathbf{d} - \mathbf{A}\mathbf{c}\|_2^2) = m\sigma^2$$

suggests finding roots

$$f(\alpha) = \|\mathbf{d} - \mathbf{Ac}(\alpha)\|_2^2 - m\sigma^2 = 0.$$

However,

$$\hat{f}(\alpha) = \|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}(\alpha)\|_2^2 - m\sigma^2$$

is biased so choosing  $\alpha$  by solving  $\hat{f}(\alpha) = 0$  leads to oversmoothing (Discrepancy principle).

Effective degrees of freedom in Tikhonov regularization

$$\hat{\mathbf{c}} = \operatorname*{arg\,min}_{\mathbf{c}} \left\{ \|\mathbf{d} - \mathbf{A}\mathbf{c}\|_{2}^{2} + \alpha^{2} \|\mathbf{L}\mathbf{c}\|_{2}^{2} \right\}$$

gives ridge regression estimator

$$\hat{\mathbf{c}} = (\mathbf{A}^T \mathbf{A} + \alpha^2 \mathbf{L}^T \mathbf{L})^{-1} \mathbf{A}^T \mathbf{d}$$

Predictors are

$$\mathbf{A}\hat{\mathbf{c}} = \mathbf{N}(\alpha)\mathbf{d}, \quad \mathbf{N}(\alpha) = \mathbf{A}(\mathbf{A}^T\mathbf{A} + \alpha^2\mathbf{L}^T\mathbf{L})^{-1}\mathbf{A}^T$$

with\*

$$\mathbb{E}(\|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}\|_2^2) = (m - \operatorname{tr} \mathbf{N}(\alpha))\sigma^2$$

\*Hall et. al, 1987.

 $\chi^2$  test for Tikhonov regularization

$$\frac{\|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}\|_2^2}{\sigma^2} \sim \chi^2_{m-n}$$

Issue if  $m \leq n$ , instead use regularized residual\*

$$\begin{split} \frac{\|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}\|_2^2}{\sigma^2} + \alpha^2 \|\mathbf{L}\hat{\mathbf{c}}\|_2^2 \sim \chi^2_{m-n+p} \end{split}$$
 
$$p = \mathsf{rank}(\mathbf{L})$$

True for large m, regardless of error distributions

<sup>\*</sup>Mead 2008, 2013; Mead and Renaut 2009.

#### **Comparison of Methods**

| Problem  | noise | L-Curve       | GCV           | UPRE          | $\chi^2$      |
|----------|-------|---------------|---------------|---------------|---------------|
| shaw     | 0.166 | 0.0357(0.008) | 0.0344(0.013) | 0.0161(0.008) | 0.0120(0.004) |
| shaw     | 0.166 | 0.0354(0.008) | 0.0342(0.013) | 0.0162(0.008) | 0.0125(0.004) |
| phillips | 0.128 | 0.0379(0.011) | 0.0268(0.012) | 0.0298(0.011) | 0.0225(0.006) |
| phillips | 0.128 | 0.0379(0.011) | 0.0283(0.013) | 0.0297(0.011) | 0.0229(0.006) |
| ilaplace | 0.069 | 0.0367(0.008) | 0.0244(0.014) | 0.0194(0.010) | 0.0169(0.007) |
| ilaplace | 0.069 | 0.0373(0.009) | 0.0217(0.012) | 0.0198(0.011) | 0.0172(0.008) |

Mean and Standard Deviation of Risk with n = 64 over 500 runs

Regularization tools: A Matlab Toolbox, PC Hansen

**Nonlinear Problems** 

$$\hat{\mathbf{c}} = \operatorname*{arg\,min}_{\mathbf{c}} \left\{ \|\mathbf{d} - \mathbf{F}(\mathbf{c})\|_{2}^{2} + \|\mathbf{L}(\mathbf{c} - \mathbf{c}_{0})\|_{2}^{2} \right\}$$

Gauss-Newton optimization gives nonlinear  $\chi^2$  test at kth iterate:

$$\left\|\mathbf{P}_{k}^{-1/2}\left(\mathbf{r}_{k}+\mathbf{J}_{k}\triangle\mathbf{c}_{k}\right)\right\|\sim\chi_{m}^{2}$$

with  $\mathbf{r}_k = \mathbf{d} - \mathbf{F}(\mathbf{c}_k) + \mathbf{J}_k \mathbf{c}_k$   $\triangle \mathbf{c}_k = \mathbf{c}_k - \mathbf{c}_0$  $\mathbf{P}_k = \mathbf{J}_k \mathbf{L} \mathbf{J}_k^T + \mathbf{I}$ 

Mead and Hammerquist, 2013.

## Nonlinear Cross-Well tomography





BOISE STATE UNIVERSITY

## Numerical Validation of Nonlinear $\chi^2$ tests

$$\|\mathbf{P}_{k}^{-1/2}\left(\mathbf{r}_{k}+\mathbf{J}_{k}\bigtriangleup\mathbf{c}_{k}\right)\|\sim\chi_{64}^{2}$$



$$\|\mathbf{P}_{k}^{-1/2}\left(\mathbf{r}_{k}+\mathbf{J}_{k}\bigtriangleup\mathbf{c}_{k}\right)\|\sim\chi_{63}^{2}$$



#### **Recovered velocity structure**



**Discrepancy Principle** 

 $\chi^2$  method

## **Neural Networks**

Stack training feature-label pairs  $(\mathbf{y}_i, \mathbf{c}_i)$ ,  $i = 1, \ldots, s$ :

$$\mathbf{Y}_0 \in \mathbb{R}^{s \times n}, \ \mathbf{C} \in \mathbb{R}^{s \times m}$$

Residual Neural Network (ResNet) forward propogation:

$$\mathbf{Y}_{j+1} = \mathbf{Y}_j + \sigma(\mathbf{Y}_j \mathbf{K}_j + b_j)$$
,  $j = 0, \dots, N-1$   
with  $\mathbf{C}^{pred} = \mathbf{h}(\mathbf{Y}_N \mathbf{W} + \mathbf{e}_s \boldsymbol{\mu}^T)$ .

 $\sigma$  - activiation function, e.g.  $tanh(\mathbf{Y})$  $\mathbf{h}(\mathbf{X})$  - hypothesis function, e.g.  $e^{\mathbf{X}}/(e^{X}\mathbf{e}_{m})$ 

and the state of the

## Learning Problem\*

Inverse problem for the weights and bias

$$\min_{\mathbf{K}_{j},\mathbf{W},b_{j},\boldsymbol{\mu}} \left\{ \|\mathbf{C}^{pred} - \mathbf{C}\|_{F}^{2} + \alpha_{1} \sum_{j=1}^{N-1} \|\mathbf{K}_{j} - \mathbf{K}_{j-1}\|_{F}^{2} + \alpha_{2} \sum_{j=1}^{N-1} (b_{j} - b_{j-1})^{2} \right\}$$

Magnitude of  $\alpha_1$  and  $\alpha_2$  control the extent to which:

- weights and bias are smoothly varying between layers
- overfitting occurs
- different weight values give the same classification

<sup>\*</sup> Future work

# **Multiple Regularization Parameters**

$$\hat{\mathbf{c}} = \arg\min_{\mathbf{c}} \left\{ \|\mathbf{d} - \mathbf{A}\mathbf{c}\|_{2}^{2} + \|\mathbf{W}\mathbf{L}\mathbf{c}\|_{2}^{2} \right\}$$
$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_{1} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{W}_{2} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{W}_{d} \end{bmatrix}, \quad \mathbf{W}_{i} = \alpha_{i}\mathbf{I}_{m_{i}}$$

BOISE STATE UNIVERSITY

Multiple  $\chi^2$  Tests

$$\|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}\|_2^2 + \|\mathbf{W}\mathbf{L}\hat{\mathbf{c}}\|_2^2 = k_1^2 + \ldots + k_m^2,$$

 $k_i = (\mathbf{P}^{-1/2}\mathbf{r})_i$ , gives  $d \ \chi^2$  Tests:

$$k_1^2 + \ldots + k_{m_1}^2 = m_1$$

$$k_{m_1+1}^2 + \ldots + k_{m_1+m_2}^2 = m_2$$

$$\vdots$$

$$k_{m+1-m_d}^2 + \ldots + k_m^2 = m_d$$

with 
$$\sum_{i=1}^d m_i = m$$
.

#### Three Regularization Parameters, Normal Data



Regularization tools: A Matlab Toolbox, PC Hansen

#### Three Regularization Parameters, Exponential Data



Regularization tools: A Matlab Toolbox, PC Hansen

Total Variation Regularization (TV)

$$\hat{\mathbf{c}} \in \operatorname*{arg\,min}_{\mathbf{c}} \left\{ \frac{\lambda}{2} \| \mathbf{d} - \mathbf{A}\mathbf{c} \|_{2}^{2} + \| \mathbf{L}_{1}\mathbf{c} \|_{1} \right\}$$







 $\lambda = 500000$ 



 $\lambda = 50000$ 



## Automatic TV regularization parameter selection

Approaches

- TV function viewed or approximated with a quadratic functional: L-curve, Discrepancy principle\*, Unbiased Predictive Risk Estimator (UPRE)\*\*, Generalized Cross Validation (GCV)\*\*\*.
- Predictive risk estimator: Stein's unbiased risk estimate (SURE)<sup>†</sup>.

<sup>\*</sup>Wen et. al, 2012; \*\*Lin et. al, 2012; \*\*\*Liao et. al, 2009 <sup>†</sup>Deledalle et. al, 2014

#### **Degrees of Freedom**

Tikhonov regularization defines smoothing matrix:  $A\hat{c} = Nd$ Nonlinear smoothers (e.g. TV) have:

 $\mathbf{A}\hat{\mathbf{c}} = \delta(\mathbf{d})$ 

Degrees of freedom of  $\delta$  are given by\*

$$df(\mathbf{A}\hat{\mathbf{c}}) = \sum_{i=1}^{m} \operatorname{cov}(\hat{\mathbf{c}}_i, \mathbf{d}_i) / \sigma^2$$

e.g.  $\mathrm{df}(\mathbf{A}\hat{\mathbf{c}}) = \mathrm{tr}(\mathbf{N})$ 

<sup>\*</sup>Efron, 2004.

Degrees of Freedom for TV  $^{\ast,\ast\ast}$ 

$$\hat{\mathbf{c}} = \operatorname{arg\,min}_{\mathbf{c}} \left\{ \frac{\lambda}{2} \|\mathbf{d} - \mathbf{A}\mathbf{c}\|_{2}^{2} + \|\mathbf{L}_{1}\mathbf{c}\|_{1} \right\}$$

$$df(\mathbf{A}\hat{\mathbf{c}}) = \sum_{i=1}^{m} \operatorname{cov}((\hat{\mathbf{c}})_{i}, \mathbf{d}_{i}) / \sigma^{2}$$
  
=  $\mathbb{E}[dim(\mathbf{A}(null(\mathbf{L}_{-\mathcal{A}})))], \quad \mathcal{A} = \{i : (\mathbf{D}\hat{\mathbf{x}}_{tv})_{i} \neq 0\}$ 

e.g. 
$$nullity((\mathbf{L}_1)_{-\mathcal{A}}) = n \Rightarrow df(\mathbf{A}\hat{\mathbf{c}}) = n$$

<sup>\*</sup>Tibshirani 2012;\*\*Dossal 2013.

# $\chi^2$ distribution for TV

If  $z_i \sim \text{Laplace}(\theta, \beta)$  all independent, then

$$\sum_{i=1}^{n} \frac{2|z_i - \theta|}{\beta} \sim \chi_{2n}^2.$$

Since the TV functional is differentially Laplacian

$$\frac{\|\mathbf{d} - \mathbf{A}\mathbf{c}\|_2^2}{\sigma^2} + \frac{2\|\mathbf{L}_1\mathbf{c}\|_1}{\beta} \sim \chi^2_{m+2m}$$

## Histograms illustrating $\chi^2$ distribution for TV



the second second second in the second







$$\begin{split} \chi^2 \ \ \mathbf{Test} \ \ \mathbf{for} \ \ \mathbf{TV} \\ \frac{\|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}(\lambda)\|_2^2}{\sigma^2} + \frac{2\|\mathbf{L}_1\hat{\mathbf{c}}(\lambda)\|_1}{\beta} \sim \chi^2_{m-df(\mathbf{A}\hat{\mathbf{c}}(\lambda))+df(\mathbf{L}_1\hat{\mathbf{c}}(\lambda))} \end{split}$$

#### Theorem

\*Suppose that  $(\mathbf{d} - \mathbf{Ac})_i \sim \mathcal{N}(0, \sigma)$  and  $(\mathbf{L}_1 \mathbf{c})_i \sim \text{Laplace}(\theta, \beta)$  with  $\mathbf{A}$  and  $\mathbf{L}_1$  full rank, then

$$\frac{\|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}(\lambda)\|_2^2}{\sigma^2} + \frac{2\|\mathbf{L}_1\hat{\mathbf{c}}(\lambda)\|_1}{\beta} \sim \chi_m^2$$

$$\underline{\operatorname{or} \|\mathbf{d} - \mathbf{A}\hat{\mathbf{c}}(\lambda)\|_{2}^{2} + \frac{2}{\lambda}\|\mathbf{L}_{1}\hat{\mathbf{c}}(\lambda)\|_{1} \approx m\sigma^{2}}.$$

\*Mead 2020

## Numerical Tests - Evaluating Image Quality

MRI image filtered with a  $15\times15$  uniform blur

Input noise:

$$\mathsf{BSNR} = 20 \log_{10} \frac{\|\mathbf{y} - \mathbf{Ac}\|_2}{m\sigma}$$

Recovered image quality:

$$\mathsf{ISNR} = 20 \log_{10} \frac{\|\mathbf{d} - \mathbf{c}\|_2}{\|\hat{\mathbf{c}} - \mathbf{c}\|_2}$$



MRI BSNR = 40;  $\chi^2$  ISNR = 8.22; Max ISNR = 9.33

Real of the second the second the



# $\mathsf{BSNR} = 40 \qquad \mathsf{MAP} \; \mathsf{ISNR} = 5.67$





 $\chi^2$  ISNR = 8.22

## Maximum ISNR = 9.30







## $\mathsf{BSNR} = 30 \qquad \mathsf{MAP} \; \mathsf{ISNR} = 2.87$





 $\chi^2$  ISNR = 5.36

## Maximum ISNR = 5.64







## $\mathsf{BSNR}=20$



#### MAP ISNR = 0.96



 $\chi^2$  ISNR = 2.10

## Maximum ISNR = 2.28







| BSNR                          | MAP estimate | Discrepancy | $\chi^2~{\rm test}$ | Maximum |
|-------------------------------|--------------|-------------|---------------------|---------|
| Camerman $(m = n = 256)$      |              |             |                     |         |
| 40                            | 5.0019       | 7.0914      | 7.1123              | 7.6329  |
| 30                            | 2.8671       | 5.3398      | 5.3556              | 5.6426  |
| 20                            | 1.8228       | 3.6031      | 3.6241              | 4.0441  |
| MRI $(m = n = 256)$           |              |             |                     |         |
| 40                            | 5.6696       | 8.1718      | 8.2201              | 9.2978  |
| 30                            | 3.2113       | 5.9225      | 5.9510              | 6.5944  |
| 20                            | 1.7017       | 3.8260      | 3.8474              | 4.5641  |
| Mountain $(m = 480, n = 640)$ |              |             |                     |         |
| 40                            | 2.8357       | 4.0904      | 4.0938              | 4.3440  |
| 30                            | 1.6074       | 2.9915      | 2.9945              | 3.1432  |
| 20                            | 0.9594       | 2.1004      | 2.1049              | 2.2803  |

Constant of the State

# **Summary and Conclusions**

- Regularization can prevent overfitting of data and make a problem well posed.
- The discrepancy principle is a simple method for automatically choosing a regularization parameter, but relies on inaccurate estimates of degrees of freedom.
- We have developed a framework for automatic and efficient selection of regularization parameters based on  $\chi^2$  properties, with theoretically justified degrees of freedom, and applied to
  - L2 or Tikhonov regularization, Ridge Regression
  - L1 or Total Variation regularization, LASSO
  - Nonlinear problems and varying regulation parameters
- The  $\chi^2$  method has been used for digital imaging problems, and problems in the geosciences. It has potential to improve the training of neural networks.