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Outline

• Near subsurface imaging of the Earth

• Electrical Resistivity Tomography using Tikhonov regularization

– Regularization informed by data constraints

• Assessing effectiveness of combining different data types

• Results from combining Electrical Resistivity and Ground Penetrating Radar data



Near subsurface imaging

Boise Hydrogeophysical Research Site (BHRS)

• Field laboratory on a gravel bar ad-
jacent to the Boise River, 15 km
southeast of downtown Boise.

• Consists of coarse cobble and sand.
Braided stream fluvial deposits over-
lie a clay layer at about 20 m depth.

Difference in retention properties in a lenticular sand feature yields significantly different
geophysical properties.



Electrical Resistivity Tomography (ERT)

• 2D grid of observations provides a
2.5-D inverted model that empha-
sizes the sand lenticular feature.

• BHRS survey consisted of 12 elec-
trodes spaced 1 meter apart acquired
with a dipole-dipole configuration.

BHRS survey acquired at surface when subsurface achieved saturation.



Electrical Resistivity Model

−∇ · σ∇ϕ = i(δ(x− s+)− δ(x− s−))1

ϕ - electric potential
i - current intensity
s± - source-sink position.

Model parameters: conductivity σ or resistivity ρ = 1/σ
Observed data: apparent resitivity 2π4ϕ

i κ

1Pidlisecky and Knight, 2008



Tikhonov Regularization

min
σ

{
‖d− F (σ)‖22 + α2‖Lpσ‖22

}
α- regularization parameter, Lp - 0th, 1st or 2nd derivative operator
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Relaxing the Constraint

min
σ

{
‖d− F (σ)‖22 + α2‖RLpσ‖22

}
R = diag(r1, . . . , rn), ri = 0 or 1 2

R

Inverted resistivity with RL1 Inverted resistivity with RL2
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2Hetrick and M., 2018



Constraint - Ground Penetrating Radar (GPR)

• GPR survey at BHRS acquired across
center of gridded ER survey.

• GPR sampled line collinear with ER
survey.

• GPR derived boundary gives con-
straint for inverting the ER dataset.



Boise Hydrogeophysical Research Site Results

• ER data inverted for resistivity

• Regularization in the form of subsurface boundary constraint inferred from GPR
data



Summary - Constraints as Tikhonov regularization

• Additional data can be used to inform the regularization operator

– Initial parameter estimates, or their first or second derivatives, can always
produce a well-posed problem.

– Adding derivative information only requires knowledge of where parameter
values change, rather than parameter values.

– May rely on secondary data processing or practitioner interpretation of data.



Assessing Effectiveness of Constraints - Singular Value Expansion

min
x
‖d−Ax‖22

with solution
x = A†b =

∞∑
k=1

〈ψk, b〉
σk

φk

ψk, φk orthonormal singular functions
σk → 0 as k →∞

• Conditioning measured by decay rate of singular values

– e.g. decay rate q ⇒ σk decays like k−q



Singular Values of Tikhonov Operator

min
x
‖d−Ax‖22 + α2 ‖x‖22

with solution
x = A†αb =

∞∑
k=1

σk
σ2
k + α2 〈ψk, b〉φk

so that
σk

σ2
k + α2 → 0, as k →∞

and α restricts the solution space3.

3Gockenbach, 2015



Additional Data as Constraints

‖d1 −Ax‖22 + ‖d2 −Bx‖22
Singular values satisfy

A∗Aφ+B∗Bφ = σ2φ or C∗Cφ = σ2φ

and can be approximated with a Galerkin method e.g. A(n), a(n)
ij = 〈qi, Apj〉, where

{qi(s)}ni=1 and {pj(t)}nj=1 are orthonormal bases so that

A(n) = U (n)Σ(n)
(
V (n)

)T
, Σ(n) = diag

(
σ

(n)
1 , σ

(n)
2 , . . . σ(n)

n

)
Define

C(n) =
[
A(n)

B(n)

]



Special case: Self-Adjoint Operators

Use singular functions in Galerkin method

a
(n)
ij = 〈φj , Aφi〉 = 〈φj , σiφi〉 =

{
σi i = j

0 i 6= j

then
A(n) = Σ(n)

A and B(n) = Σ(n)
B

so that (
C(n)

)T (
C(n)

)
=
(
Σ(n)
A

)2
+
(
Σ(n)
B

)2

and
σi
(
C(n)

)
=
√
σi
(
A(n))2 + σi

(
B(n))2



Summary - Additional Data as Constraints

• Data as constraints will reduce the amount of regularization necessary to resolve
ill-posedness.

– However, adding data may not improve decay rate in individual inversions.

• Singular values from theoretical models indicate properties and or situations
where different data types effectively regularize each other.



Complementary data in Subsurface Imaging

Ground Penetrating Radar

• High frequency

• Conductivity through
attenuation and reflection

Electrical Resistivity

• Low frequency

• Directly sensitive to conductivity



GPR Model

εü+ σu̇ = 1
µ
∇2u+ sw

4

u-electric field, ε-permittvity
µ-constant permeability
sw-source wavelet

Model parameters: conductivity σ and permitivity ε

Observed data: electric current Mu



Inverting ER and GPR jointly - full physics



Combining updates



Data weights



Inverted images - full physics



Inverted cross section - full physics



Summary -
Jointly inverting two different data types with full physics

• We have developed a joint inversion algorithm to solve for both permittivity ε
and conductivity σ using complementary GPR and ER data.

• Features were recovered that neither GPR or ER can individually resolve.

• Future work will quantify the effectiveness of combining these data types

– Calculate decay rate of singular values of individual and joint operators
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