Regularization as Constrained Inversion

Jodi Mead Department of Mathematics Diego Domenzain Department of Geosciences James Ford Clearwater Analytics John Bradford Department of Geophysics Colorado School of Mines

Thanks to: NSF DMS-1418714

Outline

- Near subsurface imaging of the Earth
- Electrical Resistivity Tomography using Tikhonov regularization
 - Regularization informed by data constraints
- Assessing effectiveness of combining different data types
- Results from combining Electrical Resistivity and Ground Penetrating Radar data

Near subsurface imaging

Boise Hydrogeophysical Research Site (BHRS)

- Field laboratory on a gravel bar adjacent to the Boise River, 15 km southeast of downtown Boise.
- Consists of coarse cobble and sand. Braided stream fluvial deposits overlie a clay layer at about 20 m depth.

Difference in retention properties in a lenticular sand feature yields significantly different geophysical properties.

Electrical Resistivity Tomography (ERT)

- 2D grid of observations provides a 2.5-D inverted model that emphasizes the sand lenticular feature.
- BHRS survey consisted of 12 electrodes spaced 1 meter apart acquired with a dipole-dipole configuration.

BHRS survey acquired at surface when subsurface achieved saturation.

Electrical Resistivity Model

$$-\nabla \cdot \sigma \nabla \varphi = \mathbf{i} (\delta(x - s_+) - \delta(x - s_-))^1$$

arphi - electric potential **i** - current intensity s_{\pm} - source-sink position.

Model parameters:conductivity σ or resistivity $\rho = 1/\sigma$ Observed data:apparent resitivity $\frac{2\pi \bigtriangleup \varphi}{i} \kappa$

¹Pidlisecky and Knight, 2008

Tikhonov Regularization

$$\min_{\boldsymbol{\sigma}} \left\{ \|\mathbf{d} - F(\boldsymbol{\sigma})\|_2^2 + \alpha^2 \|L_p \boldsymbol{\sigma}\|_2^2 \right\}$$

lpha- regularization parameter, L_p - 0th, 1st or 2nd derivative operator

Relaxing the Constraint

Constraint - Ground Penetrating Radar (GPR)

- GPR survey at BHRS acquired across center of gridded ER survey.
- GPR sampled line collinear with ER survey.
- GPR derived boundary gives constraint for inverting the ER dataset.

Boise Hydrogeophysical Research Site Results

- ER data inverted for resistivity
- Regularization in the form of subsurface boundary constraint inferred from GPR data

Summary - Constraints as Tikhonov regularization

- Additional data can be used to inform the regularization operator
 - Initial parameter estimates, or their first or second derivatives, can always produce a well-posed problem.
 - Adding derivative information only requires knowledge of where parameter values change, rather than parameter values.
 - May rely on secondary data processing or practitioner interpretation of data.

Assessing Effectiveness of Constraints - Singular Value Expansion

$$\min_{x} \|d - Ax\|_2^2$$

with solution

$$x = A^{\dagger}b = \sum_{k=1}^{\infty} \frac{\langle \psi_k, b \rangle}{\sigma_k} \phi_k$$

 $\psi_k \text{, } \phi_k$ orthonormal singular functions $\sigma_k \to 0 \text{ as } k \to \infty$

• Conditioning measured by decay rate of singular values

– e.g. decay rate
$$q \Rightarrow \sigma_k$$
 decays like k^{-q}

Singular Values of Tikhonov Operator

$$\min_{x} \|d - Ax\|_{2}^{2} + \alpha^{2} \|x\|_{2}^{2}$$

with solution

$$x = A_{\alpha}^{\dagger} b = \sum_{k=1}^{\infty} \frac{\sigma_k}{\sigma_k^2 + \alpha^2} \langle \psi_k, b \rangle \phi_k$$

so that

$$\frac{\sigma_k}{\sigma_k^2 + \alpha^2} \to 0, \text{ as } k \to \infty$$

and α restricts the solution space³.

=

³Gockenbach, 2015

Additional Data as Constraints

$$||d_1 - Ax||_2^2 + ||d_2 - Bx||_2^2$$

Singular values satisfy

$$A^*A\phi + B^*B\phi = \sigma^2\phi$$
 or $C^*C\phi = \sigma^2\phi$

and can be approximated with a Galerkin method e.g. $A^{(n)}$, $a_{ij}^{(n)} = \langle q_i, Ap_j \rangle$, where $\{q_i(s)\}_{i=1}^n$ and $\{p_j(t)\}_{j=1}^n$ are orthonormal bases so that

$$A^{(n)} = U^{(n)} \Sigma^{(n)} \left(V^{(n)} \right)^T, \quad \Sigma^{(n)} = \text{diag} \left(\sigma_1^{(n)}, \sigma_2^{(n)}, \dots \sigma_n^{(n)} \right)$$

Define

$$C^{(n)} = \begin{bmatrix} A^{(n)} \\ B^{(n)} \end{bmatrix}$$

Special case: Self-Adjoint Operators

Use singular functions in Galerkin method

$$a_{ij}^{(n)} = \langle \phi_j, A\phi_i \rangle = \langle \phi_j, \sigma_i \phi_i \rangle = \begin{cases} \sigma_i & i = j \\ 0 & i \neq j \end{cases}$$

then

$$A^{(n)} = \Sigma_A^{(n)} \quad \text{and} \quad B^{(n)} = \Sigma_B^{(n)}$$

so that

$$\left(C^{(n)}\right)^T \left(C^{(n)}\right) = \left(\Sigma_A^{(n)}\right)^2 + \left(\Sigma_B^{(n)}\right)^2$$

and

$$\sigma_i\left(C^{(n)}\right) = \sqrt{\sigma_i\left(A^{(n)}\right)^2 + \sigma_i\left(B^{(n)}\right)^2}$$

7

Summary - Additional Data as Constraints

- Data as constraints will reduce the amount of regularization necessary to resolve ill-posedness.
 - However, adding data may not improve decay rate in individual inversions.
- Singular values from theoretical models indicate properties and or situations where different data types effectively regularize each other.

Complementary data in Subsurface Imaging

Ground Penetrating Radar

- High frequency
- Conductivity through attenuation and reflection

Electrical Resistivity

- Low frequency
- Directly sensitive to conductivity

GPR Model

$$\varepsilon \ddot{u} + \sigma \dot{u} = \frac{1}{\mu} \nabla^2 u + s_w{}^4$$

u-electric field, ε -permittvity μ -constant permeability s_w -source wavelet

Model parameters: conductivity σ and permitivity ϵ **Observed data:** electric current Mu Inverting ER and GPR jointly - full physics

man and the state of the second se

$E=E_w+E_{dc}$

$$\varepsilon \leftarrow \varepsilon + \Delta \varepsilon$$

$$\sigma \leftarrow \sigma + \alpha \left(b_w \Delta \sigma_w + b_{dc} \Delta \sigma_{dc} \right)$$

Combining updates

Data weights

Inverted cross section - full physics

all so the south second in the

2

Summary -Jointly inverting two different data types with full physics

- We have developed a joint inversion algorithm to solve for both permittivity ϵ and conductivity σ using complementary GPR and ER data.
- Features were recovered that neither GPR or ER can individually resolve.
- Future work will quantify the effectiveness of combining these data types
 - Calculate decay rate of singular values of individual and joint operators

Thank you!

Active the second the second in the

Jodi Mead Mathematics Department Boise State University jmead@boisestate.edu

R