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ABSTRACT

Current hydrological methods used to predict ground water recharge rates rely on

numerical solutions of the Richards equation which models the near surface unsatu-

rated flow of water in porous soils. To effectively compute these solutions accurate

information of a soil’s ability to conduct water, known as hydraulic conductivity, is re-

quired. We anticipate that robust and cost efficient methods for measuring hydraulic

conductivity are forthcoming, and hence propose a new method of data fitting using

a quadratic cost function containing a weighted parameter and data misfit. Mead [5]

employs an algorithm to compute the weight on the parameter misfit when the data,

data weight, and a priori initial parameter estimate are specified. However, robust

numerical codes are in place only for a simplified diagonal matrix on the parameter

weight [6]. This diagonal weight is typically chosen to be an approximation to the

lth order derivative, and weights each parameter equally. This is insufficient for pa-

rameters of differing magnitudes such as those in hydrological models. We propose a

new method using misfit surface information of the underlying theoretical equation

for hydraulic conductivity (Mualem’s Equation) to obtain an appropriate diagonal

matrix, and exploit the codes in [6] to solve for the weight on the parameter misfit.
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Chapter 1

HYDROLOGY

1.1 Soil and Water

Leading environmental scientist Daniel Hillel states, “Water is, literally, the essence

of life.” Its dynamic relationship with the soil forms the basis upon which all living

organisms depend. Without the soil, water would be useless to plants who would

have neither a means of attaching to the earth, nor a reservoir of water to draw from.

There would be simply stone and sea [3].

The porous nature of soil allows plants to permeate its cavities while remaining

firmly grounded, and stores water for plants to draw from. Imagine a dry pool filled

with bowling balls, golf balls, shot-puts, and steelies. Then imagine the path water

would take as the pool was filled from the top by a fire hose. Scale down the model

and that is roughly the soil. Add to it the damming effect of clay and bedrock, the

capillary action innate to water in small passages, the downward force of gravity,

the ability of a soil to conduct water (hydraulic conductivity) and it becomes readily

apparent how intricate a model would have to be to simulate water flow in soils.

In the last few decades our understanding of this soil–water relationship has ex-
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panded dramatically, but remains vastly inadequate so far as modeling is concerned.

“In many cases...the theories and equations employed in soil physics describe not the

soil itself, but some ideal and well-defined model that we conjure up to simulate some

aspect of the soil’s behavior [3].”

One aspect of soil behavior which is especially difficult to model, and which is of

great interest to scientists, is the flow of water in unsaturated soils. The unsaturated

zone, or vadose zone, is the area between the ground surface and the water table.

Here, water flow takes on several forms as it either evaporates to the air, is absorbed

through plant roots, is held in place by the soil, or is transported down to the water

table [3].

Knowledge of the soil-water interaction in the vadose zone allows for accurate

predictions of ground water recharge rates and stream flow, among other things.

These are of particular concern to hydrologists at Boise State University who conduct

studies in the Dry Creek Experimental Watershed (DCEW) in an effort to improve

water resource management. Located in the semi-arid southwestern region of Idaho,

USA, approximately 16km northeast of the city of Boise, the DCEW is typical of the

surrounding foothills of the Idaho batholith. The headwaters of the 28km2 region

begin at an elevation of 2,100m while the drainage occurs at 1,000m above sea level.

Two main catchments, Dry Creek and Shingle Creek, contribute to the drainage, and

are the only two perennial creeks in the DCEW, [10].

Figure 1.1 provides a graphic of the DCEW, demonstrating terrain attributes and
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location of the two main catchments, Dry Creek and Shingle Creek. Data is collected

at a variety of locations throughout the watershed monitoring such things as ground-

water recharge, infiltration, basin precipitation, soil water distribution, stream-flow

generation, and runoff over multiple scales. For the purposes of this work, infiltration

and soil water distribution data will be of particular importance as they are used in

predicting the unsaturated flow of water.

Dry Creek Experimental
Watershed, near Boise, ID

N

Figure 1.1.: The Dry Creek Experimental Watershed near Boise, Idaho, consists of
two main drainage systems, Dry Creek and Shingle Creek. It is studied extensively by
hydrologists to estimate such things as ground water recharge and stream flow. These
estimates are then used to better manage water resources in the Idaho batholith.

1.2 Unsaturated Flow

According to Hillel, “Most of the processes involving soil-water interactions in the

field occur while the soil is in an unsaturated condition.” Unsaturated flow occurs

over widely varying conditions, dependent on the timing and amounts of precipitation
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as well as the type of soil. Several parameters characterize this flow. These include

suction, soil wetness, and conductivity [3].

Pressure head, or suction in unsaturated soils, consists of the quotient of water

pressure, P , and the weight density of water, γw, which have units [FL−2] and [FL−3],

respectively. Defined by

ψ =
P

γw
,

pressure head reduces to units of length, [L], often denoted as cm. Negative during

infiltration, ψ becomes zero at complete saturation of the soil, which is typically the

surface of the water table. Inversely, large magnitudes of suction (very negative values

of ψ) correspond to very dry soils [3]. For the non-hydrologist, pressure head may be

thought of heuristically as the measure of the potential a soil has to soak up water.

When it is dry it has a very large (negative) potential. When it is saturated it has

no potential, or zero potential.

Volumetric water content is a ratio of the volume of water per volume of soil

denoted by

θ = Vw/Vs.

This provides a measure of the wetness of a soil. The conventional notations θr and θs

stand for the minimal, or residual water content (dry soil), and maximal, or saturated

water content (wet soil), respectively. As soils never become fully dry in the field, θr is

difficult to measure, and usually must be extrapolated from available data. A distinct
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relationship between the volumetric water content and pressure head exists, but there

is currently no theory by which this relationship may be classified exactly [3].

A widely accepted empirical equation describing the θ − ψ relationship which is

continuous for all ψ was proposed by van Genuchten (1980) [11]. Termed as the

soil-water retention curve, it is defined by

θ(ψ) = θr + (θs − θr)[1 + (α|ψ|)n]1/n−1, (1.1)

where θr and θs denote the residual and saturated water content of the soil, respec-

tively, and α and n are empirically fitted parameters with the specifications that

α > 0 and n > 1. It is used in conjunction with corresponding data of θ and ψ, where

an inverse method is implemented to obtain α and n.

The soil moisture curve of best fit for a typical data set of corresponding values

of θ and ψ from the DCEW is plotted in Figure 1.2. As the pressure head, ψ,

tends towards zero the water content reaches the limiting value of θs corresponding

to the maximal water content of the soil. Similarly, as the pressure head becomes

large in absolute value the water content approaches the minimal limiting value of

θr, the residual water content. Though θ is usually considered a function of ψ, the

standard graphical depiction of the soil-moisture retention curve is plotted inversely

as shown. Note that the data in the residual zone levels off while the fitted curve

rises asymptotically. This difference between the data and fitted curve is due to the

difficulties in measuring large magnitudes of ψ. Because of this, the fitted curve is
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Figure 1.2.: Corresponding data of θ and ψ are fitted to obtain the curve of best fit
when the soil-water retention curve is taken to be (1.1).

most often used to extrapolate information about θr.

Hydraulic conductivity, K(ψ), is a measure of a soil’s ability to conduct water.

Maximal at saturation, and nearly zero at residual water contents, it depends on both

the type of soil and the wetness of the soil. It is the ratio of the flux [LT−1] to the

potential gradient (dimensionless), and thus has units of [LT−1], [3]. In this work it

is always stated as centimeters per day [cm/day].

As soil type greatly impacts conductivity properties, hydrologists generally classify

soils into four main categories: clay, silt, sand, and gravel. Soils consisting mainly of

sand or gravel experience very large magnitudes of conductivity near saturation. In

contrast, silt and clay soil structures have relatively low values. As the soil drys this

relationship is reversed. Sand and gravel shed the water rapidly, reaching residual

content much more quickly than do clay or silt. Thus, for very negative values of the
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pressure head, silt and clay will have relatively larger values of conductivity than sand

and gravel, though these values are globally small in magnitude. Figure 1.3 taken

from [3], demonstrates this relationship. The plot on the right shows two hypothetical

conductivity curves, one for sand and one for clay, while the plot on the left shows

their corresponding (hypothetical) soil-water retention curves. For the sandy soil

the descent from maximal conductivity at saturation (KS1) to minimal conductivity

occurs rapidly as ψ moves away from the origin. This descent is more gradual for

the clayey soil. In part, this difference is due to the texture of the soil. The clay is

finer than the sand allowing water to wick through even for low water contents. The

sand has large gaps, or pore sizes between particles allowing large amounts of water

Figure 1.3.: Hypothetical curves demonstrating conductivity (right) and correspond-
ing soil-moisture retention (left) for sand and clay soil structures.

through when the soil is nearly saturated, but traps the water because of surface

tension forces as the soil drys. In the left plot, θS1 and θS2 denote the saturated

water content for sand and clay, respectively. In both plots ψ ranges from zero at the
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origin to large (negative) values at the extremity. While a clayey soil has a greater

capacity to store water than a sandy soil, it takes far longer both to wet or dry.

1.3 Modeling Unsaturated Flow

A popular model used today in modeling the infiltration of water into unsaturated

soils is the Richards equation (1.2). Considered “...the basic theoretical equation for

infiltration into a homogeneous porous medium,” [1], the usual form is

∂θ/∂t = −∇ · [K(ψ)∇ψ] + ∂K/∂z, (1.2)

where θ is the volumetric water content, ψ is the pressure head, K is the hydraulic

conductivity, z is the vertical direction, and t is the time. It is a measure of the rate

of change of the volumetric water content per unit time, and is a function of space

and time. Though conductivity, K, is a constant for saturated soils (denoted Ks) it

is strongly dependent on ψ during unsaturated conditions [3], [1].

The Richards equation (1.2) is based on Darcy’s Law and a derivation and further

explanation may be found in both [3],[1]. This work focuses mainly on hydraulic

conductivity, K, which is the critical element of the Richards equation. To effectively

compute solutions for (1.2) reliable data or estimates of the hydraulic conductivity, K,

must be obtained. Hydrologists at Boise State University are optimistic that reliable

(and feasible) methods for directly measuring hydraulic conductivity in the field are
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forthcoming. Currently, however, as states van Genuchten, “Reliable estimates of the

unsaturated hydraulic conductivity are especially difficult to obtain, partly because

of its extensive variability in the field, and partly because measuring this parameter

is time-consuming and expensive” [11]. Fortunately, empirical approximations can

successfully be achieved. A popular method for these approximations was proposed

by van Genuchten and Y. Mualem using knowledge of the “...more easily measured

soil-water retention curve” [11].

1.4 Predicting Hydraulic Conductivity

In 1976, Y. Mualem derived an equation [7] for predicting the relative hydraulic con-

ductivity (Kr) from the soil-water retention curve (1.1). Mualem’s model provides

closed-form analytical expressions for hydraulic conductivity as a function of pres-

sure head if specific hydraulic properties of the soil are known. However, suitable

expressions for these hydraulic properties were not available until the later work [11]

of van Genuchten (1980). His continuous form of the water retention curve (1.1) com-

bined with the Mualem’s hydraulic conductivity model [7] gave (1.3), often referred

to simply as Mualem’s equation.

Considering hydraulic conductivity K in this work instead of Kr we give Mualem’s

equation as

K(ψ;n, α,Ks) = Ks
{1 − (α|ψ|)(n−1)(1 + (α|ψ|)n)1/n−1}2

(1 + (α|ψ|)n)(1−1/n)/2
, ψ < 0 (1.3)
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whereKs is the measured value of saturated conductivity. The parameters n and α are

obtained from the water retention curve (1.1) by fitting soil moisture and pressure

head measurements. If available, n and α can also be found by fitting hydraulic

conductivity data. We have introduced the notation K(ψ;n, α,Ks) in place of the

original notation K(ψ) to emphasize that K may be viewed as a function of ψ as well

as a function of its parameters. We also make use of the shortened notation K(ψ; p),

where p = (n, α,Ks)
T , whenever convenient.

Material Ks [cm/day]

Clay 10−4-10−2

Silt 10−2-1
Sand 10-103

Gravel 104-105

TABLE 1.1 Typical magnitude ranges of Ks for several soils [3].

Despite the closed-form expression for hydraulic conductivity (1.3), K is still diffi-

cult to predict. This is in part due to the large range of values the parameters obtain.

The saturated hydraulic conductivity, Ks, is known to range over several orders of

magnitude for homogenous soils, and the range is even greater in aggregate soils.

Table 1.1 lists typical ranges of Ks for differing soil types as recorded by Hillel, [3].

The parameter α is known to range in magnitude from 10−2 to 10−3, and the

parameter n is known to range from 1 − 10 [3],[11]. These ranges vary according

to the specific soil sampled. Thus, it is critical for modeling purposes to have good

a priori parameter knowledge about the specific soil being modeled. Table 1.2 lists
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measured ranges of n, α, and Ks for the DCEW. Predicted values are taken to be the

mean of the predicted values from each sample. Minimum and maximum values are

taken to be the absolute min and max across all samples, respectively. These values

will be used exclusively in this work.

Parameter Predicted Minimum Maximum

n 3.3749 2.0207 4.9774
α 0.0362 0.0232 0.0692
Ks 871.4 139.7 2714.6

TABLE 1.2 Known parameter ranges and predicted values of soils in the DCEW.

Not only do the parameters vary over widely ranging magnitudes, but even rel-

atively small perturbations in either n or α results in pronounced differences in the
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Figure 1.4.: Variations in K(ψ; p) curve given movement in the parameters n, α,
and Ks respectively. Labeled values denote the maximum and minimum for each
parameter as recorded in Table 1.2.

prediction of K. Figure 1.4 demonstrates the effect each of the parameters n, α,

and Ks has on the conductivity model (1.3). The parameter n controls the slope of

the curve in the rise from residual water content conditions to saturation conditions.
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The parameter α is a horizontal stretch or shrink of the position of this rise, and Ks

controls the limiting value of the curve as ψ → 0, which corresponds with saturation

conditions. Thus the hydraulic conductivity is largest at saturation and is nearly zero

for residual water contents. Explicitly, lim
ψ→0

K(ψ; p) = Ks, and lim
ψ→−∞

K(ψ; p) = 0.



13

Chapter 2

LEAST SQUARES

Mualem’s equation (1.3) may be used to predict hydraulic conductivity provided

the parameters n, α, and Ks are specified. While Ks is obtained from laboratory

experiments on representative soil samples, n and α are typically obtained by fitting

measured data of θ and ψ. The RETCML method (RETention Curve – Maximum

Likelihood) developed by van Genuchten et al. [4] is one of the most popular choices

for this. It minimizes the following weighted least squares objective function over the

parameter space of p:

SSQ(p) =

M
∑

i=1

[

1

σyi

(yi,meas(xi) − yi,model(xi; p))

]2

. (2.1)

Weights are chosen to be the squared inverses of the standard deviations of the error

in the measurements, σyi
, which are assumed to be normally distributed.

The parameter estimates resulting from minimizing (2.1) are first tested for ade-

quacy using a chi-square probability test where the degrees of freedom are the number

of data minus the number of model parameters. Then, if sufficiently adequate, confi-

dence regions for the parameter estimates are obtained as a function of measurement
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error in the data. Thus, this method is dependent on the correct evaluation of the

uncertainties in measurement error. If these uncertainties are reported to be smaller

than in actuality, then the test for adequacy will be biased and the conclusion will

be to reject the model. If they are larger than in actuality, then an unrealistic prob-

ability of adequacy (≈ 1) is reported [4]. The model provides the practitioner with

a weighted least squares fit of the data, and corresponding confidence regions on the

fit, but uses only information from data of θ and ψ and measurements of Ks. Note

that if the parametric model is linear, then (2.1) may be written as

SSQ(p) = (d− Lp)TC−1
d (d− Lp) (2.2)

where d is M × 1, Lp is M × 1, and Cp is M ×M with di = yi,meas(xi) and (Lp)i =

yi,model(xi, p), and Cdii
= σ2

yi
, for i = 1, . . . ,M .

Recently, (2007), Mead presented a more inclusive objective function (2.3) and

method of parameter estimation given both data misfit information (which RETCML

uses exclusively) and parameter misfit information [5]. This method involves finding

the parameter estimate p̂ which minimizes

J(p) = (d− Lp)TC−1
d (d− Lp) + (p− po)

TC−1
p (p− po), (2.3)

where Cd is the covariance matrix of the measurement errors for d, Cp is the error

covariance matrix for p0, and L is a linear mapping such that Lp0 is the mean of the
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data d. The method finds the most likely Cp such that J(p̂) = M , where M is the

number of data. While the method assumes the data and parameters are independent

and identically distributed, normality is not required. The basis of the theory lies in

Mead’s Theorem [5] which states that as M gets large, the limiting distribution of

(2.3) is a χ2 distribution with M degrees of freedom. Thus, computing Cp in this

manner results in the statistically most likely Cp given the data d, data covariance

Cd, and a priori estimate p0.

We anticipate that estimates of hydraulic conductivity will become more abun-

dant from laboratory testing and in situ data. Mead’s algorithm may then be used

advantageously over the RETCML method to incorporate available prior knowledge

into the prediction of hydraulic conductivity, and assure a unique minimizing vector

p̂. However, a linear form of Mualem’s equation is necessary.

2.1 Linear Model

In this section we linearize Mualem’s equation (1.3) with respect to its parameters

p = (n, α,Ks). We also demonstrate the sensitivity of the linear model as the point

of approximation, p̃, is perturbed.

For a multi-variable function f(x1, . . . , xk) → R the linear approximation to f

about the point x̃ = (x̃1, . . . , x̃k) is given by

L(x1, . . . , xk) = f(x̃) +
∂f

∂x1
(x̃)(x1 − x̃1) + . . .+

∂f

∂xk
(x̃)(xk − x̃k).
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It follows that the linear approximation, L(ψ; p), to (1.3) about the parameter set

p̃ = (ñ, α̃, K̃s)
T is of the form

L(ψ; p) = K(ψ; p̃)+
∂K

∂n
(ψ; p̃)(n−ñ)+

∂K

∂α
(ψ; p̃)(α−α̃)+

∂K

∂Ks
(ψ; p̃)(Ks−K̃s). (2.4)

The computations of the partial derivatives ofK in (2.4) are involved and are included

in Appendix A. In order to simplify notation and write (2.4) in a form more amenable

to inversion, we define the following.

T (ψ) =

(

∂K

∂n
(ψ; p̃),

∂K

∂α
(ψ; p̃),

∂K

∂Ks
(ψ; p̃)

)

(2.5)

S(ψ) = −∂K
∂n

(ψ; p̃)ñ− ∂K

∂α
(ψ; p̃)α̃ (2.6)

Substitution of T (ψ) and S(ψ) into (2.4) gives

L(ψ; p) = T (ψ)p+ S(ψ). (2.7)

When the pressure head, ψ is given at M discrete points, ψi, i = 1, . . . ,M , then T

and S are of dimension M × 3 and M × 1, respectively.

It follows that the linear model given by (2.7) gives a good approximation to

the non-linear model (1.3) when ||p − p̃|| ≈ 0. We investigate the sensitivity of the

linear model (2.7) as p̃ departs from p for the range of parameter values in Table 1.2.

To demonstrate, we chose the true parameter set to be p = (3.3749, 0.0362, 871.4)T ,
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the predicted value for each parameter, and then ranged p̃ over the given values in

Table 1.2.

Figure 2.1 shows the resulting linear approximations when values of p̃ are taken

at six evenly spaced points with step-size h = (0.56, 0.0092, 514.98)T . Dramatic

variations from the reference curve occur for large values of ||p − p̃|| and even the
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Figure 2.1.: As p̃ is distanced from p the linear approximation deteriorates rapidly.
Only for ||p− p̃|| ≈ 0 is the approximation physically meaningful.

proper form of the hydraulic conductivity model is lost. Further, the negative values

of hydraulic conductivity present in several of the linear approximations would imply

that the soil actually repels water. If it rained on such a soil, the rain would hover

above the surface of the soil like opposing magnets. This simply does not occur in

nature. The linear model only provides a physically meaningful approximation of

hydraulic conductivity when ||p− p̃|| ≈ 0.



18

2.2 Iterative Least Squares

As we wish to use the linear model (2.7) in the computation of (2.3) it must be that

L(ψ; p̃) is the mean of the data d. By current assumption in hydrology, Mualem’s

equation (1.3) is taken as the mean of the data. Thus the linear model (2.7) may

only be considered the mean of the data for a sufficiently good approximation to

Mualem’s equation. This only occurs if the point of approximation p̃ of the linear

model is nearly identical to p. We show that iterated least squares used with (2.7)

and good data provides a sufficient approximation when the initial estimate of p̃ is

taken to be the maximal parameter values from Table 1.2.

Let data be given by d = (d1, . . . , dM)T , where di = K(ψi; p) for ψi log-evenly

spaced from −103 to −1 (the effective range of ψ in the field). Choosing an arbitrary

p̃ and the same M values of ψi used to compute d, we construct the linear model (2.7)

about the point p̃ and write in vector form as

d = Tp+ S, (2.8)

where d and S are M × 1, T is M × 3 and p is 3× 1. Working under the assumption

that (T TT )−1 exists, we solve (2.8) for p to obtain

pls = (T TT )−1T T (d− S). (2.9)

The parameter set pls is the least squares parameter set of best fit given the linear
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model and data.

Consider the case when the synthetic data is given by the parameter set p =

(3.3749, 0.0362, 871.4)T , and the linear model is constructed about the point p̃ =

(4.9774, 0.0692, 2714.6)T . Note that p̃ contains the maximal values from Table 1.2

for each parameter. Testing revealed that this value of p̃ provides the most well-

conditioned version of T TT . The parameter set of best fit for the chosen value of

p and p̃ is given by pls = (4.263, 0.05943, 868.2)T . We can use this least squares
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 p(0) = (4.7994, 0.0692, 2714.6)T

 p(1) = (4.3583, 0.0596, 865.2)T
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 p(2), ...,  p(40)
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Figure 2.2.: As the linear least squares solution is iterated, the linear approximation
(lines) simulates the non-linear form of the data (dots).

estimate pls to update the linear model by letting p̃ = pls and solving (2.9) again

for pls. Iterating this process allows the data to pull the initial parameter estimate

p̃ as close as desired to the true solution p. Thus, iterating simulates the non-linear



20

behavior of Mualem’s equation, and provides a sufficient approximation such that the

linear model may be considered as the mean of the data. Results for this case are

depicted in Figure (2.2) where the iterates p(0), p(1), . . . , p(40) denote the curve given

by the linear model L(ψ; p), i.e. equation (2.7), approximated about the iterate p(j).

Similar results were obtained for values of p throughout the domain of measured

values given by Table 1.2. So long as p̃ was initially chosen to be the maximal pa-

rameter values the iterations eventually converged to the true solution. Convergence

was slowest for p with near minimal values of n due to poor conditioning of T TT .

This suggests the need for some sort of regularization of T TT to ensure convergence

for all choices of p.

2.3 Objective Function

To incorporate all prior knowledge about the parameters and ensure the minimization

problem is well posed we propose Mead’s model (2.3) where the mapping L is given

by the linear model (2.7), i.e.

J(p) = (d− (Tp+ S))TC−1
d (d− (Tp+ S)) + (p− p0)

TC−1
p (p− p0). (2.10)

The prior information p0 can be found from laboratory experiments while the data d

comes from conductivity measurements in the field with corresponding error covari-

ance Cd. Due to the quadratic nature of (2.10), the unique minimizing parameter set
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p̂ may be found by solving

J ′(p) = −2T TC−1
d + 2T TC−1

d Tp+ 2T TC−1
d S + 2C−1

p p− 2C−1
p p0 = 0. (2.11)

This provides the solution

p̂ = p0 + (T TC−1
d T + Cp)

−1T TC−1
d (d− (Tp+ S)). (2.12)

Both Cd and Cp are covariance matrices, and hence are symmetric positive definite [5].

Thus, the difficulty with the simple least squares solution (2.9) caused by inverting

the sometimes ill-conditioned (T TT ) is overcome by inverting (T TC−1
d T+Cp) instead.

The effect of the magnitudes of both ||Cd|| and ||Cp|| can be seen in (2.10) where it

is evident that ||Cp|| or ||Cd|| being large in magnitude implies very little confidence

in the parameters or data, respectively. Similarly, ||Cp|| or ||Cd|| being small in

magnitude implies great confidence. The covariance matrix Cd will be available from

corresponding field measurements. Computing Cp, the covariance of the a priori

initial parameter estimate p0, is more difficult as it depends on how close p0 is to the

unknown mean solution of the parameters, assuming the parameters to be stochastic.

Mead’s method is a deterministic approach which solves for the matrix Cp such

that J(p̂) = M , where M is the number of data and p̂ is the minimizing parameter set

for (2.10). This method was used to solve several benchmark problems more efficiently

than either of the well known L-curve, or general cross-validation methods [5]. It has
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also been successfully used to fit data for the soil-water retention curve [9]. Despite the

success, robust codes for the algorithm, which requires solving for M ×M unknowns

with only M equations, are still being actively researched.

Currently, robust algorithms have been established for Cp restricted to a diagonal

matrix D [6]. In these methods a Newton root finding technique is used to solve

for a scalar λ such that J(p̂) = M when Cp = λD. Typically, the operator D is

taken to be an approximation to the lth order derivative, l = 0, 1, 2, and equally

weights each parameter. As the hydrologic parameters n, α and Ks each differ by an

order of magnitude (Table 1.2) it is necessary that D is adjusted to properly reflect

the magnitude of each parameter. In the following chapter we propose using a new

method involving misfit surface information for finding a diagonal matrix D which is

appropriately scaled in each coordinate.
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Chapter 3

WEIGHT SELECTION

In Chapter 2 we introduced the objective function (2.10) which provides the optimal

fit of in situ data and corresponding laboratory results if Cd and Cp are specified

correctly. Though Cd may be obtained from repeated measurements of the data,

computing the covariance of the parameters is more difficult as the underlying a priori

distribution is unknown and not directly measurable [5]. Though Mead’s Algorithm

[5] computes Cp so that it satisfies distribution expectations on the cost function

(2.10), robust numerical codes are currently only available for the restricted case of

Cp = λD, where D is given, and λ (scalar) is obtained by the Newton method of

Mead and Renaut [6]. This restricted case only allows for a constant weighting on

the parameter misfit and is insufficient for parameters such as n, α, and Ks which

differ by several orders of magnitude. We propose here that a diagonal matrix which

appropriately scales each parameter may be obtained from misfit surface information

of Mualem’s equation (1.3). This scaling depends on a single parameter c which may

be found using existing codes in [6].
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3.1 Misfit Surface

The misfit surface provides a measure of the error δK which is incurred in hydraulic

conductivity K when an initial parameter p0 is perturbed by δp = p−p0. Thus, for a

given tolerance of δK the misfit surface may be used to determine the corresponding

δp. This δp is the standard deviation for p0 that we use to decide the appropriate

diagonal scaling matrix, i.e. D = diag(δn, δα, δKs), from which we form Cp. Though

this Cp does not tell us the error in the initial parameter estimate it does scale the

error in the parameters appropriately.

We calculate the misfit surface by computing the hydraulic conductivity, K(ψi; p),

at M distinct values of ψi, i = 1, . . . ,M . Another parameter set, p + δp, is chosen

and K(ψi; p + δp) is computed for the same M values of ψi. The error between the

two curves is measured by taking the log of their two norm misfit, i.e.

c(δp) = log ||K(ψ1, . . . , ψM ; p) −K(ψ1, . . . , ψM ; p+ δp)||2, δp 6= ~0. (3.1)

This produces a single real number c representing the log of the error in hydraulic

conductivity K generated by the perturbation of δp from p. We plot the error, or

misfit surface, for evenly spaced δp throughout the domain of the parameters as listed

in Table 1.2.

For visualization purposes, Figure 3.1 considers only variations in α and n, while

holding Ks constant. Error levels corresponding to c = 1, 2, 2.5, 3, 3.5 are plotted as
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well as the corresponding level curves. It is readily seen that even small movements

away from α and n result in large amounts of error. However, this is without
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Figure 3.1.: Misfit surface of Mualem’s equation when Ks is held constant and p =
(3.3749, 0.0362, 871.4)T .

reference to the original situation. To give a better feel of the meaning of the error

values depicted, consider Figure 3.2 where the corresponding conductivity curves

(or families of curves) are plotted. The curve designated by K(ψ; p) lies directly

on the curve corresponding to an error level of c = 1. The different error regions

surrounding this true curve represent the resulting family of conductivity curves given

by K(ψ; p+ δp) satisfying the given error levels depicted in Figure 3.1. An error level

of c = 2 represents relative accuracy, while an error level greater than c = 3 is

likely not very informative. It should be noted that viewing the error regions in the

conductivity plot allows for all three parameters to be varied simultaneously. Thus

more information is presented in Figure 3.2 than in Figure 3.1.



26

−10
2

−10
1

−10
0

−10
−1

0

200

400

600

800

1000

1200

ψ

K
(ψ

)

Parameter Ranges from Misfit Error Levels

 

 

4
3
2.5
2
1

Figure 3.2.: Error regions corresponding to c = 1, 2, 2.5, 3, 4 on the Misfit Surface plot
(Figure 3.1) are given here as conductivity curves. Note that Ks is also varied.

The level curves in Figure 3.1 are oddly shaped and difficult to define. This creates

difficulties in retrieving information about the amount of error the parameters may

obtain while (3.1) remains within a specified tolerance. If the misfit surface is to be

used to obtain standard deviations for the parameters, then some smoothing of the

level curves must be achieved. We accomplish this in the following section by using

the first order approximation to the misfit surface.

3.2 First Order Approximation of Misfit Surface

We demonstrate that a first order approximation to the misfit surface may be used to

advantageously reshape the level curves defined by (3.1). These simplified curves both

adequately approximate the true level curves and provide useful parameter bounds

for a given tolerance of the misfit. This information may then successfully be used to
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compute the appropriate diagonal values of D.

Consider a function f : R → R. The first order approximation to f about some

point x̃ in the domain of f is given by

f(x) ≈ f(x̃) + f ′(x̃)(x− x̃).

Evaluating the first order approximation at x = x̃+ h we obtain,

f(x̃+ h) ≈ f(x̃) + h · f ′(x̃).

Thus, the misfit between f(x̃+ h) and f(x̃) can be approximated by h · f ′(x̃), i.e.

f(x̃+ h) − f(x̃) ≈ h · f ′(x̃).

For our purposes, we have that hydraulic conductivity K(ψ; p + δp) can be approx-

imated about the parameter set p̃ = p by the linear approximation to Mualem’s

equation (2.7) as

K(ψ; p+ δp) ≈ T (ψ)(p+ δp) + S(ψ) (3.2)

= T (ψ)δp+ T (ψ)p+ S(ψ). (3.3)

Since the linear model T (ψ)p+S(ψ) was approximated about the point p̃ = p we have

that the linear approximation L(ψ; p) and the non-linear Mualem’s equation K(ψ; p)
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agree, i.e. by (2.4) and (2.7) we have that

L(ψ; p) = K(ψ; p) = T (ψ)p+ S(ψ).

So the misfit between K(ψ; p+ δp) and K(ψ; p) may be obtained by rearranging (3.3)

to obtain

K(ψ; p+ δp) −K(ψ; p) ≈ T (ψ)δp.

From this we may compute the misfit error across all M values of ψ as

c(δp) = log ||Tδp||2, δp 6= 0. (3.4)
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Figure 3.3.: Comparing the first order approximation to the true misfit surface (Fig-
ure 3.1) witnesses the approximation is satisfactory for ||δp|| small.

For each perturbation p + δp in the domain of the parameters we may compute
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an approximation to its misfit surface using only the perturbation δp and the one

time computation of T approximated about the point p. (The matrix T must be

recomputed for different choices of p however.) Using this method produces the

misfit surface depicted in Figure 3.3 which, though clearly a first order approximation,

performs well against the true misfit for small values of ||δp||.

3.3 Misfit Surface for Weight Selection in WLS

In Figure 3.4 we use a two-dimensional contour plot of the linear approximation

to the misfit surface (Figure 3.3) to demonstrate how values for each coordinate

of the diagonal matrix D will be obtained. We use the first order approximation

advantageously over the true misfit both because of the simplified computations and

Level Curves of First Order Approx. of Misfit Surface
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Figure 3.4.: A box is centered around the point of reference p to obtain standard
deviations of the parameters n and α for the error level of 2.5 on the misfit surface.
(Ks is held constant.)
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the more well behaved level curves. Recall that for visualization purposes of the

misfit Ks is held constant while both α and n are perturbed away from the given

reference values of n = 3.375 and α = 0.0362. This provides the misfit surface, whose

first order approximation contours corresponding to c = 1, 1.5, 2, 2.5, 3 are depicted.

We center a rectangle around the reference point n = 3.375 and α = 0.0362 which

contains the error contour of 2.5, and provides standard deviations for the parameters

n and α as 0.72 and 0.0072, respectively. Thus the standard deviations corresponding

to the level curve c = 2.5 for each parameter n, α, and Ks may be written in vector

form as σ2.5 = (0.72, 0.0072, 0)T , as there is no variation in Ks. We could define

Cp = diag(σ2
2.5). However, it is not clear that c = 2.5 is the correct choice for the

optimal parameter estimate.

We observed a relationship between the standard deviation and the level curves

that allowed retrieval of the standard deviation for a given error level without reference

to the misfit surface. Since the misfit surface had been reduced to a first order

approximation, the level curves became concentric ellipses. Further, the standard

deviations for the level curve c = 2 are one third the values obtained for c = 2.5.

Inversely, the standard deviations for the level curve c = 3 are three times those of

c = 2.5. In general, standard deviations for a given level curve c may be obtained by

the relation

σc = 32(c−d)σd,

where d is chosen and σd is known. This provides the parameter weight as Cp =
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(

32(c−d)
)2
diag(σ2

d), so that the only difficulty is in determining c so that J(p̂) ≈ M .

These preliminary results for the two dimensional case with Ks held constant can be

described in detail with Figures such as 3.4, but cannot be used in practice due to

the large variation typical of Ks.

Perturbing Ks makes the level curves in Figure 3.4 shift and contract. When

all three parameters, n, α, and Ks are perturbed simultaneously, the level curves are

three dimensional ellipsoids. Standard deviations are obtained for all three parameters

similarly to the two-dimensional case by placing a bounding box around the ellipsoid

which is centered around the point of reference p. For example, the standard deviation

for each parameter corresponding to the minimum error contour of c = 1 is given by

σ1 = (0.0235, 0.00022, 1.4)T . (3.5)

Further computations witnessed that standard deviations defining a bounding box

for the general contour level c may be obtained by σc = f(c)σd, where

f(c) =

(

35

11

)2(c−d)

. (3.6)

It follows that we may define D = diag(σ2
d) and solve for c such that J(p̂) ≈M when

Cp = f(c)2D.

To minimize computations in the search for the optimizing value of c, we exploit
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the following result [5]

J(p̂) = hTP−1h, (3.7)

where h = d − (Tp0 + S), and P = TCpT
T + Cd. Note that J(p̂) may now be

computed without p̂. This eliminates the need to solve for p̂ at each iteration of the

minimization process. Thus, the problem has been reduced to finding c such that

F (c) = hTP−1h−M = 0. (3.8)

This is the root finding problem of [6] for which robust codes are already in place. It

has already been shown that the Newton steps converge for the case of λD. However,

future work involves showing this holds when λD is replaced with f(c)2D, where f(c)

is given by (3.6), and D is defined by standard deviations obtained from the misfit

surface as in (3.6).

3.4 Synthetic Data and Testing

Previously, we selected the objective function of Mead (2.10) advantageously over

that of RETCML (2.1) in order to incorporate available a priori information about

p0 into the prediction of hydraulic conductivity. This required knowledge of the

prior covariance of the parameters Cp, but such knowledge is difficult to obtain from

measured data. Instead, we propose using a linear approximation to the misfit surface

to obtain a generalized diagonal weight Cp = f(c)2diag(σd) with f(c) defined by (3.6).
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This reduced the problem from solving for an entire matrix, to solving for a single

constant c using established code from [6]. We now demonstrate that approximating

Cp in this manner satisfactorily blends a best fit of data and a priori parameter

knowledge into an optimal solution p̂ of (2.10) with corresponding confidence regions.

As the minimum value of (2.10) follows a χ2 distribution with M degrees of free-

dom, we wish to select the covariance on the parameters, Cp, to be those values of

the standard deviations which produce a solution p̂ to (2.10) such that J(p̂) ≈ M .

Because M is assumed to be large, it follows that the χ2 distribution may be ap-

proximated by a normal distribution with mean M and standard deviation
√

2M .

Thus, using the z-statistic at the 0.1 significance level, we have that so long as

J(p̂) ∈ [M−3.64,M +3.64] the choice of Cp is statistically likely given the data, data

weight, and initial parameter estimate [5].

To test our method we construct synthetic data for hydraulic conductivity, K, as

follows. Let data be given by d = (d1, . . . , dM)T , where di = K(ψi; p) for ψi log-evenly

spaced from −102 to −1, and p = (3.375, 0.0362, 871.4)T , the predicted values for each

parameter. The perfect data is then blurred by adding normally distributed random

variates according to a specified standard deviation, namely Cd. Thus, di = di + ǫi,

where ǫi is a normal random variate with mean zero and standard deviation given

by the square root of the ith diagonal element of Cd. Similarly, the initial a priori

estimate p0 (to be obtained through laboratory experiments) was taken to be p blurred

in a similar manner as the data. We then solve for c, and hence Cp using the code of
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Mead and Renaut as defined in [6]. Error bounds for p̂ are then computed by means

of [8],

cov(p̂) = Cp − CpT
TP−1TCp. (3.9)

We summarize our findings with the following four descriptive cases.

Case 1. The a priori estimate p0 is chosen so that a feasible solution c exists

which satisfies (3.8) such that J(p̂) = M and the elements of Cp are of reasonable

magnitudes. Hence, the results are meaningful and posterior confidence regions on

p̂ contain the true solution from which the data and initial parameter estimate were

blurred. Figure 3.5 depicts such a situation.
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Figure 3.5.: The weighted least squares fit (dashed lines) against the corresponding
data, initial parameter estimate p0 (thick solid line), and true solution (thin solid
line) from which the data were blurred.

Case 2. The initial estimate p0 is chosen so that a feasible solution c exists which

satisfies (3.8) with J(p̂) = M , but Cp is small in magnitude. This causes the resulting

confidence region to be overly optimistic and miss the true solution. Figure 3.6 shows
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such a case. Such results are not unique to this method. RETCML faces similar

problems when the errors in the data measurements are reported to be larger than in

actuality and are discuess further in [11].
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Figure 3.6.: Overly optimistic confidence regions are the result of small values of Cp,
and the confidence region fails to capture the true solution.

We suggest that the practitioner use available a priori knowledge to try different

values of p0 and then use (3.8) with the algorithm of Mead and Renaut [6] to weight

the estimate. The practitioner should use their discretion in accepting the results

when the confidence regions on the solution p̂ are small. Also, they should be aware

of the following two cases where the results are inconclusive.

Case 3. The estimate p0 is chosen so that no feasible solution c exists which

satisfies (3.8). In this case Cp is extremely large and J(p̂) > M + 3.64. Thus, we

reject the results with the conclusion that the initial parameter estimate p0, data, and

data weight do not accurately reflect the same soil sample. As Cp large, the resulting
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confidence region extends across the entire parameter space. See Figure 3.7.
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Figure 3.7.: In an effort to get J(p̂) < M + 3.64 the algorithm had to zero out
the parameter misfit term by making Cp extremely large. This results in confidence
regions which cover the entire parameter space. The results are thus inconclusive.

Case 4. The estimate p0 is chosen so that no feasible solution c exists which

satisfies (3.8), but in this case Cp has elements nearly identical to zero and J(p̂) <

M − 3.64. The results are again rejected as improbable. The weight C−1
p was made

extraordinarily large in an attempt to achieve J(p̂) ≈ M . Thus, the optimal solution

is necessarily identical to p0 in order to minimize (2.10) by eliminating the large

parameter misfit weight. As a result of the extremely small values of Cp the confidence

regions on the solution p̂ are smaller than the thickness of the line depicting the

solution in Figure 3.8.

From the results of cases 3 and 4 we conclude that the use of Matlab’s fsolve,

which was used here, is not sufficiently robust and that the full algorithm of Mead

and Renaut must be implemented to ensure convergence. It is worth noting however
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Figure 3.8.: The value of J(p̂) is smaller than expected witnessing that the objective
function (2.10) is placing too much weight on the parameter misfit, and should be
rejected.

that whenever J(p̂) < M − 3.64 it follows that Cp is nearly zero, and that Cp is

extremely large whenever J(p̂) > M + 3.64.
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Chapter 4

CONCLUSIONS

To model ground water flow using the Richards equation (1.2), accurate estimates of

hydraulic conductivity are necessary. Currently, RETCML is usually implemented

to obtain estimates of hydraulic conductivity from information about the soil-water

retention curve (1.1), and the measured value of saturated conductivity Ks. When

in situ data for hydraulic conductivity become available, RETCML may also be

used to obtain a weighted least squares fit of the data using measurement errors as

weights. However, as both in situ data and laboratory estimates of the parameters

will be available, we proposed using Mead’s objective function (2.3) advantageously

over RETCML in order to incorporate all knowledge available into the prediction of

hydraulic conductivity.

Robust numerical codes for implementing Mead’s algorithm are currently only

available for a diagonal version Cp of the form λD, where D is typically an approx-

imation to the lth order derivative. Due to the differing magnitudes of each of the

hydraulic parameters n, α, and Ks, it was necessary to find a diagonal matrix D

which was properly scaled in each coordinate. This was done using the first order

approximation to the misfit surface. Because of the nature of this misfit surface, the
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standard deviations of the parameters corresponding to any given error level could

be obtained from a single vector (3.5) according to the relationship in (3.6). Thus,

the covariance Cp was determined to be of the form f(c)2D, where D = diag(σ2
d).

Evaluating the objective function (2.10) for the resulting optimal solution p̂ serves

as a statistical test for the adequacy of the solution. For the significance level of 0.1,

we reject the solution whenever J(p̂) > M + 3.64 or J(p̂) < M − 3.64 due to its

extremely low probability of occurrence. This provides a control for the practitioner

to recognize when the objective function (2.10) should not be used. Whenever a

probable solution is obtained, confidence regions of the optimal parameter estimate p̂

usually correctly define the certainty of the estimate. However, at times this estimate

is too optimistic and the true solution is not contained within the provided confidence

regions. Thus, the practitioner should be wary when confidence regions are small.

When the method is successful the results may be used to more accurately predict

hydraulic conductivity, and hence solutions to the Richards equation, using both in

situ and laboratory data until more robust codes for Mead’s full algorithm are derived.
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Appendix A

COMPUTATIONS FOR LINEARIZING MUALEM’S

EQUATION

The following computations are referenced in the text just after Equation (2.4), and
demonstrate the linearization of Mualem’s Equation (1.3). A notation change for
clarity is implemented so that p̃ = p0. Recall that the linear form of Mualem’s
Equation is given by

L(ψ; p) = K(ψ; po)+
∂K

∂n
(ψ; po)(n−no)+

∂K

∂α
(ψ; po)(α−αo)+

∂K

∂Ks

(ψ; po)(Ks−Kso
).

(A.1)
The partial derivative of K(ψ; po) with respect to n is of the form,

∂K

∂n
(ψ; po) = Kso

(

D(ψ) · ∂N(ψ)
∂n

−N(ψ) · ∂D(ψ)
∂n

)

(D(ψ))2
,

with the following values forD(ψ) and N(ψ) and their partial derivatives with respect
to the parameter n.

D(ψ) = [1 + (αo|ψ|)no](1−1/no)/2,

N(ψ) = {1 − (αo|ψ|)no−1[1 + (αo|ψ|)no]1/no−1}2

∂D(ψ)

∂n
= n−2

o /2[1 + (αo|ψ|)no](1−1/no)/2 · log(1 + (αo|ψ|)no) · (αo|ψ|)no log(αo|ψ|)
∂N(ψ)

∂n
= −2{1−(αo|ψ|)no−1[1 + (αo|ψ|)no]1/no−1} · (g(ψ)

∂h(ψ)

∂n
+
∂g(ψ)

∂n
h(ψ))

Also, we have the following values for these intermediate substitutions.

g(ψ) = (αo|ψ|)no−1

h(ψ) = [1 + (αo|ψ|)no]1/no−1

∂g(ψ)

∂n
= (αo|ψ|)no−1 log(αo|ψ|)

∂h(ψ)

∂n
= −n−2

o [1+(αo|ψ|)no]1/no−1 log(1 + (αo|ψ|)no) · (αo|ψ|)no log(αo|ψ|).

Piecing these several substitutions back together provides ∂K
∂n

(ψ; po).
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Similarly, the partial derivative of K(ψ; po) with respect to α is of the form,

∂K

∂α
(ψ; po) = Kso

(

D(ψ) · ∂N(ψ)
∂α

−N(ψ) · ∂D(ψ)
∂α

)

(D(ψ))2
,

with the following values forD(ψ) and N(ψ) and their partial derivatives with respect
to the parameter α.

D(ψ) = [1 + (αo|ψ|)no](1−1/no)/2,

N(ψ) = {1 − (αo|ψ|)no−1[1 + (αo|ψ|)no]1/no−1}2

∂D(ψ)

∂α
= (1 − 1/no)/2[1 + (αo|ψ|)no](1−1/no)/2−1 · no(αo|ψ|)no−1)|ψ|

∂N(ψ)

∂α
= −2{1−(αo|ψ|)no−1[1 + (αo|ψ|)no]1/no−1} · (g(ψ)

∂h(ψ)

∂α
+
∂g(ψ)

∂α
h(ψ))

Also, we have the following values for these intermediate substitutions.

g(ψ) = (αo|ψ|)no−1

h(ψ) = [1 + (αo|ψ|)no]1/no−1

∂g(ψ)

∂α
= (no − 1)(αo|ψ|)no−2|ψ|

∂h(ψ)

∂α
= (1/no − 1)[1+(αo|ψ|)no]1/no−2 · no(αo|ψ|)no−1 · |ψ|.

When pieced back together, these values provide ∂K
∂α

(ψ; po). As K(ψ; po) is already
linear with respect to Ks, we simply note that in (A.1),

K(ψ; po) and
∂K

∂Ks
(ψ; po)(Ks −Kso

)

reduce to K(ψ;no, αo, Ks).




