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Abstract.

Gaussian elimination with partial pivoting achieved by adding the pivot row to the
kth row at step k, was introduced by Onaga and Takechi in 1986 as a means for reducing
communications in parallel implementations. In this paper it is shown that the growth
factor of this partial pivoting algorithm is bounded above by µn < 3n−1, as compared
to 2n−1 for the standard partial pivoting. This bound µn, close to 3n−2, is attainable
for a class of near-singular matrices. Moreover, for the same matrices the growth factor
is small under partial pivoting.
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1 Introduction.

The reduction of a system of equations Ax = b to upper triangular form,
Ux = d, by Gaussian elimination (GE) with partial pivoting (GEPP) is well
known [1]. Suppose that the matrices at each step of the Gaussian elimination
with pivoting are denoted by A(k), k = 0, 1, . . . , n− 1, where A(0) = A, and the
rows of A(k) are denoted by the row vectors a(k)

l , l = 1, 2, . . . , n. At the kth
pivoting stage GEPP proceeds by exchanging row a(k−1)

k with pivot row a(k−1)
lk

,
where lk > k, the index of the pivot row at step k, is chosen to guarantee that
the multipliers

mik = a
(k−1)
ik /a

(k)
kk , i > k,

are bounded by one in modulus. Note, here and throughout, the subscript de-
notes the row index and the superscript (k) indicates the value of that quantity
for the kth reduction in the Gaussian elimination. In a serial implementation
of GEPP the “exchange” of rows is recorded as an index permutation, while in
parallel implementations, physical exchange of elements of A between processors
will actually be required to implement GEPP. The communication cost associ-
ated with this exchange may be a limiting factor in the global efficiency of the
parallel implementation, particularly if bidirectional communication is not pos-
sible. Onaga and Takechi [4] proposed a modification of the pivoting strategy,
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employing uni-directional communication; Gaussian elimination with partial piv-
oting by adding (GEPPA). At the pivoting phase in GEPPA the pivot row a(k−1)

lk

is identified, and then, if lk > k rather than switching rows a(k−1)
lk

and a(k−1)
k as

in GEPP, a(k−1)
lk

is “added” to a(k−1)
k according to

a(k)
k = a(k−1)

k + σka
(k−1)
l , σk = sign(a(k−1)

lkk a
(k−1)
kk ).(1.1)

Here, if a(k−1)
kk = 0, the convention sign (0) = 1 is adopted. In this way the

multipliers are guaranteed to be bounded by one in modulus. Moreover, just
as GEPP corresponds to the LU factorization of a permuted matrix PA, where
P is a permutation matrix, it can be shown that GEPPA corresponds to the
LU factorization of a matrix RA. The matrix R is unit upper triangular with
non-zero entries given by

rkl = σk1,

and L is unit lower triangular with |lkj | ≤ 2 for 1 ≤ j < k < n and |lnj | ≤ 1 for
1 ≤ j < n.

A measure of the stability of algorithms for GE is given by the growth factor
which measures the growth in the elements of the reduced matrices A(k), with
respect to those of A:

Definition 1.1. The growth factor, ρ, is defined to be the ratio of the largest
element (in magnitude) over all reduced matrices A(k), k = 1, . . . , n − 1, to the
largest element of A,

ρ =
max

k
(max

i,j
|a(k)

ij |)

max
i,j

|aij |
.

The bound for the growth factor, ρGEPP , under the standard partial pivoting,

ρGEPP ≤ 2n−1

is well known [1]. It is not difficult to show from (1.1) that the growth in max
norm of rows between matrices A(k−1) and A(k) is determined by

‖a(k)
i ‖∞ ≤




‖a(k−1)
i ‖∞, if i < k,

‖a(k−1)
k ‖∞ + ‖a(k−1)

lk
‖∞, if i = k,

max(‖a(k−1)
lk

‖∞, ‖a(k−1)
k ‖∞), if i = lk,

‖a(k−1)
i ‖∞ + ‖a(k−1)

lk
‖∞ + ‖a(k−1)

k ‖∞, if k + 1 ≤ i ≤ n, i �= lk.

(1.2)
Thus the elements in the reduced matrices A(k), with respect to those of A, grow
by at most a factor of 3 each step. Moreover, at the last step of the reduction
the factor 3 cannot be achieved. We thus arrive at the following result, which
provides the upper bound for ρGEPPA.
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Figure 1.1: Comparison of maximal growths (left), and difference between 3n−2 and µn

(right).

Theorem 1.1. The growth factor, ρGEPPA, for partial pivoting with addition
satisfies

ρGEPPA < 3n−1.

The attainable bound µn on ρGEPPA [3] satisfies µn < 3n−2, n ≥ 6, as illus-
trated in Figure 1.1. Moreover, this compares favorably with the bound 4n−1,
shown by Sorensen, [5], for pairwise pivoting.

The purpose of this paper is to investigate the stability of the GEPPA algorithm
via a numerical study of the growth factor for GEPPA. Although the presented
theoretical results demonstrate that GEPPA is potentially worse than GEPP
with regards to backwards stability properties, as measured by larger growth
factors, it is critical to assess the algorithm for average case matrices, and to
determine whether the upper bound is achievable. We demonstrate in Section 2
that, although a class of matrices can be found for which the upper bound is
achieved, on the average, the growth factors achieved by GEPPA and GEPP are
comparable. Moreover, examples have been found for which ρGEPPA < ρGEPP .

2 Numerical results.

The class of matrices for which µn can be obtained when GEPPA is applied,
is determined by first taking a singular matrix and then modifying its entries by
machine epsilon so as to force non-singularity, [3]. From the verification of (1.2)
it is apparent that for maximal growth the multipliers should satisfy mik = ±1.
Hence, if we choose a(k−1)

ik = τia
(k−1)
lkk with τi = ±1, the updates given by

a(k)
k = a(k−1)

lk
+ σka

(k−1)
k ,

a(k)
i = a(k−1)

i − τia
(k−1)
lk

− τiσka
(k−1)
k if i �= lk, and i > k,(2.1)

a(k)
lk

= −σka
(k−1)
k if i = lk,

provide maximum growth, and a(k−1)
i can be defined backwards from a(k)

k . Thus
maximal growth in the entries of A(k) can be achieved by setting alkk = 1+η with
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η the order of machine epsilon and the diagonal entries set to η. For example the
matrix obtained in this way for n = 10 is given by




η −1 −1 −1 1 −η 1 1 + η 1 1
−1 η −1 −1 1 −(1 + η) −1 −(1 + η) −1 1
−1 −1 η −1 1 1 −η −1 1 1
−1 −1 −1 η 1 1 −(1 + η) 1 −1 1

1 1 1 1 η −1 −1 −η 1 −1
1 + η 1 1 1 −1 η −1 −(1 + η) −1 1
−1 −1 1 + η 1 −1 −1 η 1 −1 1

1 1 1 1 1 + η 1 1 η −1 −1
−1 −1 −1 1 + η −1 −1 1 + η −1 1 1
−1 1 + η 1 1 −1 1 + η 1 1 + η 1 1




.

The growth of coefficients in matrices determined in this way was compared
under elimination by GEPP and GEPPA. The results are presented in Table 2.1.
The condition number κ2 = ‖A‖2‖A−1‖2 is also reported. From these results it
can be concluded that ρGEPP small does not imply ρGEPPA small, or equiva-
lently, that ρGEPPA large does not require ρGEPP large also. Not reported are
the tests for the same matrices but using pairwise pivoting. In this case there
was little appreciable difference in the size of the growth factor between pairwise
and partial pivoting.

Table 2.1: Growth factor for matrix generated by equations (2.1).

n log10(ρGEPP ) log10(ρGEPPA) log10(3n−2) ‖A‖2‖A−1‖2

5 0.45 1.45 1.43 1.87
10 0.63 3.79 3.82 3.77
25 0.98 10.95 10.97 10.00
50 1.18 22.87 22.90 20.69

100 1.34 46.73 46.76 42.03

Results shown in Table 2.2 indicate that GEPPA, for n larger than 30, is not
accurate for systems defined by (2.1), while GEPP is still accurate up to n = 100.
As a measure of the backward stability of the algorithms we also calculated the
difference, E, of the computed factorization as compared to A, namely, for GEPP
E = P−1(LU)−A, and for GEPPA E = R−1(LU)−A. Not surprisingly ‖E‖ is
very large when the growth factor is also large, indicating that the large growth
factor does show backwards instability.

It was argued by Trefethen and Schreiber [6] that, on the average, systems
of equations which occur in real applications can be considered to be sets of
randomly distributed real numbers. Thus to assess whether the bound derived
for ρGEPPA is pessimistically high for such systems, the accuracy of GEPPA
was tested using random matrices generated according to a uniform distribu-
tion. The growth factors are reported in Table 2.3. Additional numerical re-
sults are presented in [2]. We observe here that ρGEPP < ρGEPPA << n and
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Table 2.2: Solving Ax = b, A as described by (2.1), x̂ the computed solution, b calculated
from the randomly generated exact solution x.

‖x− x̂‖/‖x‖ ‖E‖
N GEPP GEPPA GEPP GEPPA
5 2.7223 e−16 1.0889 e−15 1.1102 e−16 2.2204 e−16
10 2.4474 e−16 1.8509 e−13 7.2585 e−16 3.2156 e−13
25 1.5938 e−15 2.2737 e−06 2.4576 e−15 2.1663 e−05
30 1.6896 e−15 4.3099 e−04 3.2091 e−15 2.4414 e−03
40 2.3554 e−15 6.7621 e+01 3.9833 e−15 8.4853 e+00
50 5.3660 e−15 5.6945 e+05 5.5730 e−15 7.4146 e+05
100 1.3661 e−14 2.5465 e+30 9.0809 e−15 6.0446 e+23

Table 2.3: Average growth factors from 50 uniformly distributed matrices.

N ρGEPP ρGEPPA Ratio
4 1.0144 1.4645 1.4437
8 1.2049 1.6865 1.3997

16 1.7948 2.0618 1.1488
32 2.8689 3.8643 1.3470
64 4.6757 5.3944 1.1537

128 7.7762 8.4940 1.0923
256 11.8851 14.6088 1.2292
512 19.0832 20.7663 1.0882

ρGEPPA ≈ ρGEPP , demonstrating that the stability of GEPPA is similar to that
of GEPP. In Table 2.4 we give the growth factors of 5 matrices of size 16 with
entries generated randomly with a uniform distribution. We see that in two cases
ρGEPP > ρGEPPA occurs. Hence we cannot conclude from the average case that
necessarily ρGEPP ≤ ρGEPPA. Still our results show that, on the average, the
growth factors from GEPPA are larger; see [2].

Not all matrices, however, exhibit average case behavior. In particular, Wright
[7] presented a set of matrices for which the growth factors are large. These
matrices arise from the solution of a two-point boundary value problem, and are

Table 2.4: Growth factors for 5 uniformly distributed matrices of dimension 16 × 16.

ρGEPP 2.42 1.63 1.51 1.94 1.31
ρGEPPA 1.78 1.97 3.65 1.92 1.69
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Table 2.5: Growth factors and condition numbers of (2.2) with h = 0.02.

N ρGEPP ρGEPPA Ratio ‖A‖2‖A−1‖2

8 1.14 e+00 1.63 e+00 1.427479 4.360403
24 1.32 e+00 1.63 e+00 1.229815 22.27574
50 2.32 e+00 4.60 e+00 1.978920 48.74113
100 1.10 e+01 3.76 e+01 3.425457 75.37583
200 3.87 e+02 1.47 e+03 3.807935 90.52391
400 5.39 e+05 2.06 e+06 3.819086 96.62072
512 3.11 e+07 1.19 e+08 3.819094 97.78428

of the form 


I I
−eMh I

−eMh I
. . . . . .

−eMh I




(2.2)

with h the time step and eMh = I +Mh. We compared the growth factors from
the two different kinds of pivoting when

M =
[

−10 −19
19 30

]
.

Unreasonably large growth was found for both methods. The growth factors
for GEPPA, however, are larger, up to a factor of four, than those for partial
pivoting; see Table 2.5.

3 Conclusions.

The stability of a parallel mechanism for carrying out partial pivoting has been
investigated both theoretically and numerically. Theoretical results demonstrate
that the upper bound on the growth factor under the parallel strategy, GEPPA,
may approach 3n−2, as compared to 2n−1 for partial pivoting. Although neither of
these bounds is actually acceptable for accurate solutions of systems of equations,
it has been recognized that the real issues are whether the bound is not only
achievable but also likely to be achieved for the average case situations. In this
case the bound is achievable, but for randomly generated matrices the growth
under the new partial pivoting is comparable to, and can be less than, growth
under partial pivoting. Thus, there is no reason to conclude that GEPPA will be
significantly worse in practice than GEPP.
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