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Abstract

New Runge-Kutta Methods for method of lines solutions of systems
of ordinary differential equations arising from discretizations of spatial
derivatives in hyperbolic equations, by Chebyshev or modified Cheby-
shev methods, are introduced. These Runge-Kutta methods optimize
the time step necessary for stable solutions, while holding dispersion
and dissipation fixed. It is found that maximizing dispersion mini-
mizes dissipation, and vice versa. Optimal methods with respect to
large stability intervals on the imaginary axis, and with respect to the
eigenvalue spectrum of the underlying pseudospectral discretizations
are developed. In the latter case, stability regions are optimized to
include the outliers of the spatial operators. Performance on a model
problem in computational aeroacoustics is evaluated. The optimized
schemes have two more function evaluations per time step than the
standard fourth order Runge-Kutta method, but allow time steps up

to 1.7 times larger. Moreover, dissipation and dispersion are reduced.

1 Introduction

There has been much recent work on numerical methods for accurate and
efficient computation of wave propagation [5]-[9], [16]-[21]. In [13], we ana-
lyze the effectiveness of the Chebyshev pseudospectral method (CPS) and
a modified Chebyshev pseudospectral method (MPS) for the spatial dis-
cretization of the one dimensional wave equation u; = u,. If CPS is used in

space, then
ur = Du (1)

with
d

dz
Tj(z) and z; the Chebyshev polynomials and points, respectively [3]. The

Di; = Tj(x)|z=$¢a

MPS method amounts to a preconditioning of the differential operator, D,

by a diagonal matrix A, with entries dependent on the underlying spatial
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transformation. Here, and in [13], we consider the transformation introduced
by Kosloff and Tal-Ezer [10] for which the entries of A are given by
_sin ) /1 — (aw;)?

Ay = ,
[0

and for which we make the choice a = cos(1/N) in order to maximally damp
the entries in D, see [13]. In both cases the matrices D and AD are dense.
It is, therefore, imperative to design a solver in time which allows large time-
steps while maintaining both stability and accuracy. Here we consider the
design of optimal Runge-Kutta Methods for the integration of systems with
system matrix D or AD. Equivalently, we require Runge-Kutta methods
for which the stability regions enclose the scaled spectrum of the underlying
system matrix. Thus, in Section 2, we review properties of the spectrum
and pseudo-spectrum of the CPS and MPS derivative matrices, D and AD,
respectively.

The methods in [6]-[9], [16], [17], [20], and [21] are optimal in the sense
that they require a small number of points per wavelength for minimal dis-
persion and dissipation. CPS and MPS require less than 5 points per wave-
length for phase and amplitude errors O(1072) [8], [13]. Thus, here we aim
to improve the efficiency of the RK time stepping scheme, without introduc-
ing dissipation and dispersion, i.e., while maintaining the accuracy of the
spatial operator. In section 3 we show how to hold dispersion and dissipa-
tion fixed, while maximizing the stability region. In the process, we give
the dissipation relations and show that maximizing the order of dispersion
minimizes the order of dissipation, and vice versa, i.e., minimal dissipation
and dispersion compete.

In section 4 we derive two new RK methods of order four that allow
time steps approximately 1.7 times larger than the usual fourth-order RK
method. Finally, in section 5 we evaluate the new RK methods in conjunc-
tion with CPS or MPS in space, for a benchmark problem in computational

aeroacoustics [5].
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Figure 1: Eigenvalues of CPS matrix (x) and contours of its pseudo eigen-
values (-), for perturbations 1076,107%,...,107!. Outer contour is 107!,

and N = 32.

The approach taken by Chiu and Kopriva in [4], for the determination of
an optimal RK method, assumes that the eigenvalues of the CPS derivative
operator dictate the size of the time step. When the system matrix is non-
normal, i.e. DT D # DDT, eigenvalue stability is not necessarily valid. Then
the pseudospectrum determines the stability [14]: The pseudospectrum of a
matriz D is the set of eigenvalues of the matriz D + E, with ||E|| < €, i.e.
all X # 0 such that

(D+E)z = \z.

It is well known, moreover, that the first order spatial derivative operator
determined by the CPS method is non-normal [14], thus the pseudospectrum
is much larger than the spectrum. This is illustrated in Figure 1 where we
plot the spectrum and pseudospectrum for e = 107%,...,107!. The largest

contour refers to the boundary of the pseudospectrum when ¢ = 10~1.
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Figure 2: Eigenvalues of MPS matrix (x), single contour is pertubation 107!,

other pertubations do not change the spectrum. N = 32.

Figure 2 shows the same information for the MPS operator. The single
contour reflects the pertubation 10~!, all other pertubations do not influence
the spectrum. Note in each case that the outliers are insensitive to the
perturbations.

Chiu and Kopriva were specifically interested to determine a method
with fast convergence to steady state, rather than one that maintains high
accuracy. Hence, in the development of their method they assumed large
intervals of stability along the negative real axis and optimized to minimize
dispersion. Consequently, their scheme is automatically dissipative and is
not appropriate for accurate wave propagation for which the strength of the
signal is important.

We observe, from Figure 1, that an optimal RK scheme for CPS would
require both large negative real stability and a large interval of stability
along the imaginary axis. These appear to be competing demands because,
as we shall verify, a large interval of negative real stability introduces sub-

stantial dissipation, and is therefore not in general desirable. For the MPS
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method, however, we see that only large intervals along the imaginary axis
are desirable. Hence we should be more successful in designing appropriate
methods for the MPS operators. In Section 4 we describe an approach for

finding the optimal schemes.

3 Dispersion and Dissipation in Runge-Kutta Meth-

ods

Consider the solution of the initial value problem

Ut = f(t,’ll,) (2)

by the s-stage Runge Kutta method
S
Untl = Up+h Z bik; (3)
i=1

S
ki = f (tn + cihyun + B ailkl> (4)

=1
S

G o= Y ai, (5)
j=1

where b;, ¢;, a;; are determined by the method. These coeflicients are usually

written in the Butcher array:

c | a1 a2 ... ais
cy | @21 aze ... ags
Cs Gs1 Qg2 Gss
b1 bo bs
or
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If A is strictly lower triangular, the RK method is explicit. If A is lower
triangular the RK method is semi-implicit, and if A is not lower triangular
the RK method is implicit [11].

We follow the approach of Van Der Houwen and Sommeijer in [18] but
emphasize the study of dissipation errors, rather than dispersion, or phase-

lag, errors. We consider the usual linear test equation,
ug=Au, A=z+yi, (6)
for which the exact solution is
u(t+h) = "THIu(l). (7)
Using the notation of Albrecht [1], the RK solution has the form
tny1 = (L+RATed ...+ ()b A Le)uy, (8)

with e = (1,...,1) € R%. If B; = bT A7 Le, then

Up+1 = (1 + h)\,Bl +... (h)\)sﬂs)un (9)
= (Fs +1iGs)un, (10)

with
Fy = 14 hx+ Boh?(x? — y?) + Bsh3(2® — 3zy?) + Buh?(z* — 62%9° + y*)

+85h% (2 — 102%y? + 5zy*) + ... + Beh* (2 + y?)> cos 50,
Gy = hy+ 2B zy + B3h° (3z%y — y°) + Buh* (4a®y — day®)

+B5h% 5ty — 1022y +1°) + ... + Bsh*(z? + 4?) 2 sin 56,

6 = tan '(y/z).
Definition 1 (Van Der Houwen and Sommeijer [18]) The RK method de-
fined by (8) is dissipative of order p if
et — |Fy +iG,| = O(hPT),

and dispersive of order q if

hy — tan" ! (G /Fs) = O(h4th).



Optimal Runge-Kutta 9

x 10
3 T T T T T
25+  3rdorder RK (=), 2nd order RK (--) A
7/
2 | , 7 4
<) Y 7
g1s T
] .
o 1 i B
0.5F B
0 1 1 IS Sl - I I I
0 001 002 003 004 005 006 0.07 0.08 0.09 0.1
hy
x107°
1.5 T
4th order RK (), Optimized RK (—-)
l |-
=
=
0
005
0 1 L 1 I — = = — L L
0 001 002 003 004 005 006 007 0.08 0.09 0.1
hy

Figure 3: Dissipation error (11) in a 2nd order, 3rd order, 4th order and an

optimized RK method.

When we expand all terms in Definition 1 up to order p = 5, we see that
a pth order method is dissipative and dispersive of order p. In [18], Van Der
Houwen and Sommeijer consider the case for which z = 0, i.e. the exact
solution is non-dissipative, and show that an order p method has an order
of dispersion of at least 2[’%1}

In a 4th order method with x = 0, Fs and G, simplify to Fy(hy) =
1 — Ba(hy)? + Ba(hy)*, and G4(hy) = hy — B3(hy)3. The dissipation error is

DS(hy) = 1—|Fy(hy) +1Ga(hy)l, (11)
and the dispersion error is
DP(hy) = hy —tan™" (Ga(hy)/F(hy)). (12)

In Figures 3 and 4 we plot the dissipation and dispersion errors versus hy
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Figure 4: Dispersion error (12) in 2nd order, 3rd order, 4th order and opti-
mized RK methods.

for a 2nd (B2 = 1/2,03 = 0,84 = 0), 3rd (B2 = 1/2,03 = 1/6,64 = 0), and
4th (Be = 1/2,83 = 1/6,84 = 1/24) order method. The optimized method
is described in section 4.1. The dissipation error drops significantly from a
3rd order to a 4th order RK, i.e. from O(10 %) to O(10~8). Similarly, the
dispersion error drops significantly from a 2rd order to a 3th order RK, i.e.
from O(10~%) to O(1077).

Van Der Houwen and Sommeijer determine the dispersion relations in
[18]. In Table I we provide the corresponding dissipation relations. A de-
tailed derivation of these dissipation relations, and the expansions of the
terms in Definition 1, is given in [13].

Given the dispersion and dissipation relations, we can now determine the

Runge-Kutta methods with a given number of stages which maximize the
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Table I: Dissipation relations.

Order of
Order Dissipation
1,2 3 B2 =1/2

5 B3 —Bs=1/8

7 285 — 26+ 5 —B1=0

9 —2B3f5 — 2B7 + B3 + 203 + s = 0

11 B3 + 2337 — 2B10 + 2By — 2BufBs — s = 0

13 —20537 + 2012 + 264 — 2811 + B8 — 2309 + Pro =0
3,4 B2 =1/2,83=1/6,84=1/24

7 Bs — s =1/144

Bs — 687 +1/192 + 685 + 385 = 0
11 1238 + 47 — 2410 + 2489 — fs — 1265 = 0
13 —24587 + 2B12 + Bs — 2411 + 1285 — 4By + 1210 =0




Optimal Runge-Kutta 12
Table II: Maximum order of dissipation.
No. of | Order of | Order of Order of
Stages | Accuracy | Dissipation | Dispersion | S5 B3 B Bs B
2 2 3 2 ;
3 2 5 2 : z
4 2 7 2 sl i E3V2 | 3+1V2
1 1 1 1
5 2 9 2 3 7 3 3
1 —1+v5 V52 —114+5v5
0 2 9 2 2 8 8 64
1 1 1 1
5 4 7 4 5 & 51 i
1 3 1 1 1
6 2 11 2 5 16 6 51 =13
6 92 11 9 1 3+v3 243 3v/3+5 194113
2 8 8 16(—1+v3) | 64(—14+V3)
6 2 11 D) 1 3—/3 2—/3 3v3-5 —19+11v/3
2 8 8 16(14+v/3) 64(1+/3)
1 1 1 1 —1
6 4 8 4 3 5 21 03 576

orders of dispersion and dissipation. The relations in Table I are simplified
if we take

Bj =0, for j>s.

Then, the coefficients that give the maximal order of dissipation can be de-
termined by solving the resulting system. The number of stages, maximum
order of dissipation, and the required 3;, j < s, are given in Table II. The
resulting order of dispersion is also listed. We see that a 6 stage method can
have order of dissipation 11, but the resulting order of dispersion is 2.

The order of dispersion is maximized in a similar manner, using the dis-
persion relations provided in [18]. In Table III we summarize the number
of stages, maximum order of dispersion, the required £3;, and the resulting
orders of dissipation. We see that it is possible for a 6 stage method to have
order of dispersion 12, but the resulting order of dissipation is 1. We con-

clude that the requirements of maximal order of dissipation and dispersion
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Table III: Maximum order of dispersion.
No. of | Order of | Order of Order of
Stages | Accuracy | Dispersion | Dissipation | [ B3 B4 Bs B

2 4 1/3
2 2 4 3 1/2
3 1 6 1 2/5 | 1/15
3 3 4 3 1/2 | 1/6
4 1 8 1 3/7 12/21 | 1/105
4 3 6 3 1/2 | 1/6 | 1/30
4 4 6 5 1/2 | 1/6 | 1/24
5 1 10 1 4/9 | 1/9 | 1/63 1/945
5 3 8 3 1/2 | 1/6 | 4/105 | 1/210
5 5 6 5 1/2 | 1/6 | 1/24 1/120
6 1 12 1 5/11 1 4/33| 2/99 1/495 | 1/10395
6 3 10 3 1/2 | 1/6 | —4/21 | —47/210 | —8/105
6 5 9 5 1/2 | 1/6 | 1/24 1/120 1/840

compete, a fact that the authors have not seen stated elsewhere.

4 Optimal Stability Regions

The orders of dissipation and dispersion may be controlled by constraining

the values of 3;, according to the dispersion and dissipation relations. It is

thus possible to constrain the coefficients of 8; to provide certain orders of

dissipation and dispersion, while maintaining a limited number of degrees of

freedom which can be used to optimize the scheme for the underlying spatial

discretization. Note, however, that the stability regions of maximal order

schemes, p < 4, cannot be maximized, because the number of stages is the

same as the highest order, and there are no remaining degrees of freedom. If
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the order p of the method is greater than 4, maximal order schemes constrain
the coefficients 31,...,8, where r < p. Hence, the free parameters are (3,
p < j < s. For example, in [12], Lawson finds a value of s that maximizes
the real part of the stability region for the p = 5 method. His method allows
time steps twice as large as those for a fourth order method.

There is a trade off between the efficiency of the method and the max-
imal accuracy. As the order of accuracy increases, the number of function
evaluations increases, and, hence, the cost increases. This is particularly
significant when the underlying spatial operators are dense. We therefore
chose a compromise and work with methods of 3 to 6 stages. Since higher
accuracy leads to larger stability intervals, we only drop the maximum order
of accuracy by one, in order to introduce free parameters. We require the

following definition in the description of the algorithm.

Definition 2 The region of absolute stability is the set of all hA € C such
that

|r(hA)| <1, where r(z) = Zs:ﬁzzz, Bo = 1. (13)
=0

Moreover the boundary of the stability region is given by the set of all hA € C
such that
|r(hX)| = 1. (14)

4.1 Extended Stability along the Imaginary Axis

We noted in Section 2 that the pseudo-spectrum for the MPS operator ex-
tends along the imaginary axis without extension along the negative real
axis. It is therefore appropriate to determine schemes with extended inter-
vals of stability along the imaginary axis. Consequently, schemes designed
with respect to large intervals of stability along the imaginary axis are useful
for any differential operator with similar properties.

Algorithm I

1. Hold f,. .., B; fixed for the desired order of dissipation and dispersion.
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2. Maximize f(Bj4+1,...,0s) where f is defined as follows:

2.1 Solve r(z) = €% for a set of 6, 0 < 6, < 27 to provide roots
2k(0)) = T + iy, kK =1,2,...,s (see [2]).

2.2 f(IBj-H’ s aﬁs) = maxk7[{|ykl| such that zy ~ 0}
Example

1. Let s=2,j=1and p; = 1.

2.1 From (13) 7(2) = 1+ 2z + 222, and assume zj, = zy + iy, for k = 1, 2.
The set of points {xk(6;), yx(6;)} with 6, =0, ..., 27, that solve

1+ (zk + tyg) + Bo(zk +iyx) = eiel, (15)
define the stability boundary.

2.2 Consider first that (15) is solved numerically for z;(6;). From the set
of z(6;) with zx(6;) = 0,

F(B2) = max |y, (61)]-

Alternatively, solve (15) exactly for zx(60;). Let z(6;) = 0 for all k,1,
then yx = /282 — 1/f2, and

f(B2) = V282 — 1/Pa.

In this case the maximum occurs when Gy = 1.

Algorithm I was solved in Matlab, the function "roots“ was used to
solve r(z) = €t for z, and "fmins“ was used to maximuze f(Bj11,.--,8s)-
The methods found are near optimal and results are shown in Table V.
Vichnevetsky proves in [19] that the largest segment of the imaginary axis
which is contained in the stability region cannot exceed [—i(s —1),i(s + 1)].
Kinnmark and Gray [7] state the methods which obtain these upper bounds.

These methods, however, are only second order accurate. We note that with
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Table IV: Stability intervals of existing methods.
Stability Interval
Order of Near Imag. Axis | Scaled Interval
Stages | (accuracy, diss., disp.) [—4, 0] [—6/s,d/s]
3 (3,3,4) [—1.7871,1.7871] | [-.5957,.5957]
4 (4,5,6) [—2.8333,2.8333] | [—.7083,.7083]
5 (4,7,4) [—3.4642,3.4642] | [—.6928,.6928] | fB5 = 1/144
6 (5,5,6) [—4.1256,4.1256] | [—.6876,.6876] | Bs = 1/1280
Table V: Stability intervals of methods found from Algorithm I.
Stability Interval
Order of Near Imag. Axis | Scaled Interval
Stages | (accuracy, diss., disp.) [—4d, 0] [—6/s,d/s]
3 (2,3,2) [—2.0696,2.0696] | [—.6899,.6899] | B3 = .25
4 (3,3,4) [—2.8521,2.8521] | [-.7130,.7130] | B4 = .03812
5 (3,3,4) [—3.9356,3.9356] | [—.7871,.7871] | B4 = .03255
Bs = .00633
6 (4,5,4) [—4.8984,4.8984] | [—.8164,.8164] | S5 = .00556

Be = .00093
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Algorithm I for 3 stages we obtain their optimal method, f1 =1, f2 = 1/2,
B3 = 1/4, as expected.

By comparing Table IV with Table V, we see that a six-stage fourth-
order method almost doubles the imaginary stability interval of the four
stage fourth-order method (RK4). Thus, the time step for the optimized six
stage fourth-order method (RKM) can be almost twice that for RK4. RKM,
however, requires two more function evaluations per step.

If RK4 requires a time step of size hy for stable solutions, there are
4T/ h4 function evaluations at the final time T'. The stability intervals given
in Tables IV and V indicate that RKM requires a time step of size 1.73h4,
and thus 3.47T'/h4 function evaluations at time 7. This results in an effective

step size increase of 15.26%, which is significant for long time integrations.

h=0.062

S
4 -
= = o®
=
E ol (
<
= e
—=
—a |
— S
—4 —3 a
S
A f
= 27 o®
=
E ol (
<
= e
_2 -
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— S
—Aa —3 —2 — A o a

Figure 5: Eigenvalues (x) and pseudo spectra (-) of MPS matrix, N = 32.
Stability regions for RKM (outer .), and RK4 (inner .).
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Table VI: The largest allowable time steps which ensure the pseudo spectra
of MPS lie within the stability region of RK4 or RKM.

N h Ratio | % increase
RK4 RKM in efficiency
16 1440 .2470 | 1.72 14.35
32 0620 .1110 | 1.80 19.35
64 || .0300 .0520 | 1.73 15.56
100 || .0180 .0325 | 1.81 20.37
128 || .0143 .0251 1.76 17.02

The ability to almost double the time step with RKM was confirmed
by plotting the stability region, and the scaled pseudo-spectra of the MPS
derivative matrix, see Figure 5. In the time integration, the spatial ap-
proximation is scaled by the time step h, so that it lies within the stability
boundary.

In Table VI we give the largest time-step for RK4 and RKM with in-
creasing N. These results confirm the approximate improvement of 1.7 to
1.8 for RKM over RK4.

4.2 Extended Stability along the Imaginary Axis and the
Negative Real Axis

From Section 2 we observe that optimal RK methods to be used in conjunc-
tion with the CPS operator must extend both along the negative real axis
and the imaginary axis. In this case optimal methods were determined by
applying Algorithm I, but with the additional constraints that the outlier
eigenvalues for N = 32, which are insensitive with regard to perturbations,
lie inside the stability region.

Algorithm IT

Algorithm I, but do not require =y = 0, i.e. replace 2.2 by
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imaginary
o
T
L

Figure 6: Stability boundary of RKC (outer .) and RK4 (inner .).

22" f(Bj+15---:Bs) = n}gX{kajI}-
The six stage fourth order method (RKC) defined by
Bs = 6.42853125e — 04 Bs = 005676975

was found from Algorithm II. It has a stability region which reaches out to
include the outlying eigenvalues of the CPS derivative matrix, see Figure 6.

Again, the ability to increase the time step was confirmed by plotting the
scaled pseudo-spectrum of the CPS matrix with the regions of stability of
RKC and RK4 in Figure 7. The scaled pseudo spectrum lies entirely within
the stability regions of RKC or RK4, for € < 1072. Table VII shows that the
increased time step with RKC, as compared to RK4, is largely independent
of N.

The values of the RKM and RKC coefficients are not unique, but the

methods must be 4th order, i.e. from [1]
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Figure 7: Eigenvalues (x) and pseudo spectra (-) of CPS matrix, N = 32.
Stability regions for RKC (outer .), and RK4 (inner .).

b A%c = i 16" De? = b D Ac,

D =diag(c;). In addition, both RKM and RKC have the condition that

Boe =k  B5= ko, (16)

for the k1, ky found in the optimization process. This nonlinear system

of 10 equations and 21 unknowns can be reduced to 10 equations and 10
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Table VII: The largest allowable time steps which ensure the pseudo spectra
of CPS lie within the stability region of RK4 or RKC.

N h Ratio | % increase
RK4 RKC in efficiency
16 || .1240 .1980 | 1.60 6.45
32 || .0310 .0520 | 1.68 11.83
64 || .0079 .0132 | 1.67 11.39
100 || .0032 .0055 | 1.72 14.58
128 || .0020 .0034 | 1.70 13.33
unknowns if we assume the method is of the form
00
co | o
c3 c3
cy cq
Cs Cs
|0 0 0 0 o6
by be bz by 0 bg

The values of the RK coefficients are given by

by = —0.15108370762927 by = 0.75384683913851 b3 = —0.36016595357907

by = 0.52696773139913
cp = 0.16791846623918
cs = 0.09295870406537

and

b1 = —1.11863930033618
by = 0.99978067105009
co = 0.11323867464627

bs =0

b = 0.23043509067071

c3 = 0.48298439719700 ¢4 = 0.70546072965982

ce = 0.76210081248836,

by = 2.50614037113582
bs = 0
c3 = 0.38673801369281

b3 = —2.22307558659639
bs = 0.83579384474665
cs = 0.62314978336040



Optimal Runge-Kutta 22

cs = 0.05095678842127 c¢g = 0.54193120548949.

for RKM and RKC, respectively.

0.6

0.4 -

0.2 h

L L L L L L
o 50 100 150 200 250 300 350

Figure 8: True solution of benchmark problem at ¢t = 300.

5 Solution of Spherical Wave Problem

To evaluate the effectiveness of the optimized RK methods a benchmark

problem in computational aeroacoustics [5] was solved:

ou OJu u

— t — 4+ — = <r<31

8t+3r+r 0 5<r<315,t>0
u(r,0) =0 5 <r <315

u(b,t) = sin(nt/3) 0 <t < 300.

The analytic solution is

u(r,t):{ O’_ retEs (17)
S[sin(m(t —r +5)/3)]/r, r<t+5.

Figure 8 illustrates the analytic solution on the entire domain. FErrors in

the numerical solution will be seen on the right side of the graph, where
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Figure 9: Solution of benchmark problem with CPS, the true solution (-)
and computed solution (0). RK4 time = 32 hrs (left), RKC time ~ 28 hrs
(right).

the wave dies out. Thus, as in [5], the numerical results are plotted on the
domain 250 < r < 330.

Figures 9 and 10 illustrate the solutions for N = 270, for which there are
5 points per wavelength, details are provided in [13]. The time steps are cho-
sen so that the absolute error measured in the maximum norm is O(1073).
In Figure 9, the graph of the solution found with RK4 is identical (up to
order 1073) to the graph of the solution found with RKC. Correspondingly
in Figure 10, the RK4 solution is identical to the RKM solution.

Execution times, provided in Table IX, are for a Fortran code running
on a dedicated HP 9000/735 system. We conclude that RKM provides the
most optimal algorithm while maintaining accuracy equivalent to that of

the CPS operator.

330
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Figure 10: Solution of benchmark problem with MPS, the true solution (-)

and computed solution (o).

(right).

RK4 time ~ 8 min (left) RKM time ~ 6 min

Table VIII: Summary of methods and their execution times.

Spatial | Temporal

Approx. | Approx. | Step size | Error Time
CPS RK4 .0004 | 3e — 3 | 32hr.6min.39sec.
CPS RKC .00067 | 3e — 3 | 28hr.32min.5sec.
MPS RK4 1 2e — 3 8min.14sec.
MPS RKM 2 2e — 3 6min.2sec.
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