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ABSTRACT

Recovering material properties of the subsurface using
ground penetrating radar (GPR) data of finite band-
width with missing low frequencies, and in the presence
of strong attenuation is a challenging problem. We pro-
pose three non-linear inverse methods for recovering
electrical conductivity and permittivity of the subsur-
face by joining GPR multi-offset and electrical resistiv-
ity (ER) data acquired at the surface. All methods use
ER data to constrain the low spatial-frequency of the
conductivity solution. The first method uses the enve-
lope of the GPR data to exploit low frequency content
in full-waveform inversion and does not assume struc-
tural similarities of material properties. The second
method uses cross-gradients to manage weak ampli-
tudes in the GPR data by assuming structural similar-
ities between permittivity and conductivity. The third
method uses both the envelope of the GPR data and
the cross-gradient of the model parameters. By joining
ER and GPR data, exploiting low frequency content
in the GPR data, and assuming structural similarities
between electrical permittivity and conductivity we are
able to recover subsurface parameters in regions where
the GPR data has a signal-to-noise ratio close to one.

INTRODUCTION

Electrical properties in the subsurface such as electrical
permittivity ε and conductivity σ, hold relevant informa-
tion regarding short, medium and long-term human needs.
In many of these applications surface data acquisition of
active source methods such as electrical resistivity (ER)
and ground penetrating radar (GPR) can prove to have a
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lower and more feasible deployment cost when compared
with borehole methods.

ER is sensitive only to electrical conductivity while GPR
is sensitive to electrical permittivity by reflectivity and ve-
locity, and conductivity by attenuation and reflection of
the excited electromagnetic wave. Full-waveform inver-
sion (FWI) of GPR multi-offset data is an emerging tech-
nique for enhancing the resolution of electrical properties
with little a-priori knowledge of the subsurface geometry
with the caveat of needing an initial ray-based tomog-
raphy for robust initial models (Ernst et al., 2007a,b).
However, inverting with only surface acquired GPR data
remains a challenge and thus limits most of the current
applications in which GPR is commonly used.

Similar to seismic full-waveform inversion, two main
challenges that must be resolved for GPR-FWI are the
lack of low frequencies and the presence of attenuation in
the data. Fortunately, ER can be used to enhance GPR
because it is directly sensitive to low spatial frequencies in
electrical conductivity and is directly linked to the GPR
governing physics by Maxwell’s equations. In this work
we combine the two methods and make the assumption
that electrical properties are not frequency dependent. Al-
though this is not true in general, in Domenzain et al.
(2019) we note that for a variety of relevant earth materi-
als, the (real) effective conductivity and the DC conduc-
tivity differ by a factor of less than 5. Hence, assuming
frequency independent electrical parameters serves as a
starting point to test the enhancement of the spatial res-
olution in our inversions.

In Domenzain et al. (2019) we developed a joint inver-
sion scheme of GPR and ER data that uses the full two
dimensional physics of Maxwell’s equations. The inver-
sion accounts for the sensitivities of GPR and ER data in
each iteration of an adjoint method based inversion. The
GPR source wavelet is assumed known and kept constant
throughout the inversion. However, it is noted that exist-
ing methods to solve for the GPR source wavelet (Pratt
et al., 1998; Ernst et al., 2007a) can easily be applied
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to our scheme. We tested our joint inversion scheme in
two synthetic examples showing enhancements when com-
pared to individual GPR and ER inversions. The recov-
ered conductivity was improved through joint inversion
because the ER data enhanced amplitude detection and
the GPR improved spatial resolution. Thus, the recovered
conductivity benefits from the complementary resolution
of GPR and ER data. Moreover, neither data resolution
is lost.

In this work we address joint inversion of GPR and ER
data when the conductivity in the subsurface is strong,
i.e for values above 10 mS/m where GPR attenuation is
high and the signal-to-noise ratio in the GPR data is close
to one. Unfortunately, if the attenuation is too strong the
GPR data will miss reflection events that hold meaningful
information of the subsurface. In this situation (Domen-
zain et al., 2019) we find that even though the recovered
conductivity is better resolved by using both GPR and ER
data, the recovered permittivity lacks the correct ampli-
tude and misses long wavelength resolution. Fortunately,
we can improve our joint inversion scheme with existing
inversion methods. Specifically, we use methods that (i)
enhance the low frequency content of the GPR waveform
and (ii) exploit structural similarities of the subsurface
parameters.

Methods developed for seismic FWI (Bozdağ et al., 2011;
Liu and Zhang, 2017) can be used to enhance low fre-
quency content in GPR-FWI. In the context of seismic
FWI it is well known that low frequencies in the wave-
form data help the inversion avoid local minima (Virieux
and Operto, 2009; Baeten et al., 2013). In Bozdağ et al.
(2011) the authors propose using the analytic signal of
the observed waveform in order to isolate the instanta-
neous phase and amplitude (i.e. envelope) information of
the data and modify the FWI objective function accord-
ingly. In Liu and Zhang (2017) the authors join first ar-
rival travel-time with early arrival envelope data to build
a rich low spatial-frequency initial velocity model that is
then used in the FWI routine. Both works find that the
low frequency content of the envelope waveform data is
good for enhancing the low frequency spatial content of
the recovered velocity. In this work we use the envelope
waveform data of GPR and further join it with ER data
to alleviate low spatial frequencies in both electrical per-
mittivity and conductivity.

Inversion methods that assume structural similarities of
the target subsurface parameters (Haber and Oldenburg,
1997; Gallardo and Meju, 2003) can be used to further
improve our joint inversion algorithm by letting the ER
data inform the GPR data in regions of high attenuation.
Assuming structural similarities in target subsurface pa-
rameters allows different geophysical data with varying
spatial and physical sensitivities inform each other where
to look for a solution that more accurately resembles real-
ity if the structural similarity holds true. In Gallardo and
Meju (2003) the authors choose the cross-gradient oper-
ator as a structural constraint and successfully apply it

to real seismic and ER data. In this work we show that
by assuming structural similarities between electrical per-
mittivity and conductivity we can use the cross-gradient
operator for filling in amplitude and spatial-frequency con-
tent to our solutions while still using forward and inverse
models that take into account the full physics of Maxwell’s
equations.

Since then different types of geophysical data have been
used in this context (Gallardo and Meju, 2007; Fregoso
and Gallardo, 2009; Gross, 2019). Most relevant to our
study are the works of Linde et al. (2006) and Doetsch
et al. (2010) which use borehole GPR and ER data to
solve for electrical permittivity and conductivity. All of
these works rely on a linearization of one or both for-
ward models and clear access to the sensitivity matrices
of the data, which in case of time-domain FWI the latter
is computationally expensive. In Hu et al. (2009) the au-
thors combine seismic and controlled-source electromag-
netic data to solve for compressional velocity and electrical
conductivity in a Gauss-Newton inversion while enforc-
ing the cross-gradient constraint. They employ adjoint
based methods for computing the sensitivity matrices of
the data with the computational burden of storing and
inverting the Hessian of the objective functions. In this
work we compute the gradients of the objective functions
using adjoint based methods and relieve the need to store
and compute the Hessian of the objective functions.

We begin with a brief review of the two-dimensional
physics of the forward models for GPR and ER, and ob-
jective functions for the GPR and ER inversions. Then we
review our joint inversion scheme from Domenzain et al.
(2019) and define three new joint inversion schemes de-
signed to manage attenuation and enhance low frequen-
cies. Finally, we test our joint inversions on three syn-
thetic subsurface models designed to challenge the spatial
and amplitude resolution of GPR and ER sensitivities.
The first two models illustrate our method with a centered
box anomaly where the improvements of our methods are
clear. The third model is based on an alluvial acquifer
located at the Boise Hydrological Research Site (Barrash
and Clemo, 2002). This model contains realistic electrical
parameters and a subsurface geometry that loosely resem-
bles previous GPR multi-offset data imaging done on this
site (Bradford et al., 2009b). Testing the attributes and
limitations of our method on synthetic data is crucial for
assessing the viability of our results when used on field
data.

GPR AND ER FORWARD MODELS AND
INVERSIONS

We briefly recall the governing equations, forward models
and objective functions for the GPR and ER experiments.
Our physical models assume isotropic physical properties
and a 2D subsurface geometry where the parameters are
constant along the y-axis. These assumptions are made
for ease of computations of our forward models and not
crucial for our inversion schemes. Both the GPR and ER
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forward models are discretized on the same computational
grid. Gradients of the objective function with respect to
the parameters are given in Appendix A and a full dis-
cussion is found in Domenzain et al. (2019).

Ground penetrating radar

The two-dimensional physics of the GPR experiment are
given by,µo 0 0
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 Ḣz
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(1)
where u is the electric field component in the y direction,
(Hx, Hz) are the magnetic field components in the x and
z direction, Jy is the source term, ε is the electric permit-
tivity, σ is the electric conductivity and µo is the magnetic
permeability which we assume constant and equal to the
permeability of free space. Let εo denote the electrical
permittivity of free space. From now on, we will refer to
the relative permittivity εr = ε/εo simply as permittivity.
We discretize equation 1 by

u = Lw sw,

dsw = Mw u
(2)

where Lw is the discretized differential (time marching)
operator of equation 1, u is the electric field y component
defined in space and time, sw is the source term, Mw is
the measuring operator, and dsw = Mw u is the data of the
experiment, i.e. a common-source gather. The discretized
solution of equation 2 is described in detail in Domenzain
et al. (2019).

We make note that from this point forward we will refer
to operators and variables in capital and lower case let-
ters respectively, and distinguish continuous and discrete
mathematics in normal and bold font respectively. A com-
plete table of relevant notation can be found in Table 1.

Electrical resistivity

The two-dimensional physics of the ER experiment are
given by the steady state Maxwell’s equations where Ohm’s
law holds (Pidlisecky et al., 2007),

−∇ · σ∇ϕ = i(δ(x− s+)− δ(x− s−)), (3)

where ϕ is the electric potential, i is the current inten-
sity and s± is the source-sink position. We write the dis-
cretized version of equation 3 as,

Ldcϕ = sdc,

dsdc = Mdcϕ,
(4)

Symbol Meaning Note
εr Discretized relative permittivity
σ Discretized conductivity
L Discretized differential operator
s Discretized source
M Discretized measuring operator Used for
d Synthetic data GPR and ER
e Residual of synthetic vs observed data
Θ Objective function
v Discretized adjoint field
g Gradient of objective function
α Step size for g
u Electric wavefield on the y component
u̇ finite-difference time derivative of u Only
∆σw GPR conductivity update GPR
∆εr GPR permittivity update
β GPR envelope weight
ϕ Electric potential
Sdc The matrix −((∇σLdc)ϕ)> Only
∆σdc ER conductivity update ER
∆σ Joint conductivity update
aw, adc Weights to regulate ∆σw and ∆σdc
c Step size for ∆σ Used for
∆στ,◦ Cross-gradient conductivity update the joint
∆εr,τ,◦ Cross-gradient permittivity update update
bεr , bσ Weights to regulate ∆εr,τ,◦ and ∆στ,◦

Table 1: Reference for the notation used in the discretized
inverse problems. Symbols common in both GPR and ER
experiments are stripped from their subscripts to avoid
clutter.
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where Ldc is the discretized differential operator of equa-
tion 3, ϕ is the electric potential, sdc is the source term,
Mdc is the measuring operator that computes observed
voltages, and dsdc is the data of the experiment for one
source. The discretized solution of equation 4 is described
in detail in Domenzain et al. (2019).

GPR inversion

The GPR inversion algorithm finds parameters εr∗ and
σ∗ that satisfy,

{εr∗,σ∗} = arg min Θw(εr, σ; dow), (5)

where the subscript ∗ denotes the imaged parameters and
dow denotes all the observed GPR data. From now on we
denote the electrical permittivity and conductivity in bold
font to emphasize these parameters are discretized and in
matrix form. We have,

Θw =
1

ns

∑
s

Θs
w, (6)

where s indexes the sources, ns denotes the total number
of sources, and

Θs
w =

||ew||22
||do,sw ||22

, (7)

where do,sw is the observed data for one source and ew =
dsw−do,sw is the residual of the modeled and observed data.
The details for computing the gradient of Θw with respect
to εr and σ can be found in Appendix A.

ER inversion

The ER inversion algorithm finds σ∗ that satisfies,

σ∗ = arg min Θdc(σ; dodc), (8)

where dodc is all of the ER data. We have,

Θdc =
1

ns

∑
s

Θs
dc, (9)

where s indexes the source, ns denotes the total number
of sources, and

Θs
dc =

||edc||22
||do,sdc ||22

. (10)

We denote do,sdc the observed data for one source and edc =
dsdc−do,sdc the residual of the modeled and observed data.
The details for computing the gradient of Θdc with respect
to σ can be found in Appendix A.

JOINT INVERSIONS

Joint inversion of ER and GPR data

The objective function for our joint inversion is,

{εr∗,σ∗} = arg min Θw(εr, σ; dow) + Θdc(σ; dodc). (11)

We optimize 11 using gradient descent by first computing
the descent directions for σ: ∆σw and ∆σdc for both Θw

and Θdc respectively, and then take a weighted average of
these descent directions to update σ; we then compute the
descent direction ∆εr and update εr. Figure 1 shows a
code-flow diagram of this process. We follow Domenzain
et al. (2019) and briefly explain how these updates and
joining-weights are computed.

After all the gradients for all sources are computed the
update directions are,

∆σw = − 1

nw

nw∑
s=1

αsσ gsw,σ, (12)

∆σdc = − 1

ndc

ndc∑
s=1

αsdc gsdc, (13)

∆εr = − 1

nw

nw∑
s=1

αsεr gsεr , (14)

where αsσ, α
s
dc, and αsεr are computed as in Domenzain

et al. (2019). After ∆σw and ∆σdc have been computed
they are joined by weights aw and adc,

∆σ = aw ∆σw + adc ∆σdc, (15)

we then normalize ∆σ by its largest amplitude and finally
write,

∆σ ← c∆σ, (16)

where c is the geometric mean of the maximum amplitudes
of ∆σw and ∆σdc prior to normalization. The driving
purpose of the weights aw and adc is of letting both up-
dates ∆σw and ∆σdc always contribute to ∆σ in propor-
tion to their objective function value at a given iteration.
Figure 2 shows the shape as a function of iterations of the
weights aw and adc should have: a bow-tie shape where at
early iterations aw dominates and at later iterations adc
takes over. For a full discussion on the weights aw and
adc see Domenzain et al. (2019).

In order to enforce positivity constraints the parameters
are updated as (Meles et al., 2010),

σ ← σ � exp(σ �∆σ), (17)

εr ← εr � exp(εr �∆εr). (18)

We will refer to this inversion method (i.e. optimizing
equation 11) as Joint.

Joint inversion of GPR envelope and ER
data

We begin with a description of GPR envelope inversion
which exploits the low frequency content of the GPR data.
Similar to GPR inversion we find εr∗ and σ∗ but with
the objective function Θ̃w (Bozdağ et al., 2011; Liu and
Zhang, 2017),

{εr∗,σ∗} = arg min Θ̃w(εr, σ; dow, dow,a),

Θ̃w = Θw(εr, σ; dow) + Θw,a(εr, σ; dow,a),
(19)
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where dow,a is the envelope of the observed data using the
Hilbert transform and,

Θw,a =
1

ns

∑
s

Θs
w,a,

Θs
w,a =

||ew,a||22
||do,sw,a||22

,

(20)

where s indexes the sources. We optimize Θ̃w using gra-
dient descent and regulate how much information Θw,a

contributes to the inversion by weighing the gradients of
Θw and Θw,a differently. The gradients of Θw,a with re-
spect to the parameters εr and σ are computed using a
full-waveform approach where a different adjoint source
has to be used for Θw,a as explained in Bozdağ et al.
(2011) and reproduced in Appendix B for completeness.

For the sake of clarity we illustrate the optimization
procedure for just εr. For one source, let g̃sεr , gsεr and gsεr,a
be the gradients of Θ̃s

w, Θs
w and Θs

w,a, where the last two
are computed as in equations A-3 and B-10 respectively.
We have,

g̃sεr = gsεr + βεr gsεr,a, (21)

where the gradients gsεr and gsεr,a are assumed normal-
ized in amplitude and βεr is a fixed scalar quantity for all
sources and all iterations. The weight βεr regulates how
much we boost the low frequency content of the observed
GPR data. Our numerical results show that a larger value
of βεr gives better depth resolution with the caveat of loos-
ing spatial resolution. However if the value of βεr is too
large the inversion might strongly favor the low spatial-
frequency content over the high spatial-frequency content,
thus not giving accurate results.

Once g̃sεr has been computed we find the step-size αsεr
as detailed in Domenzain et al. (2019). After g̃sεr and
αsεr have been computed for all sources the permittivity
update is,

∆εr = − 1

nw

nw∑
s=1

αsεr g̃sεr . (22)

Analogous to εr, the update for σ is,

g̃σ = gsw,σ + βσ gsσ,a, (23)

∆σw = − 1

nw

nw∑
s=1

ασ g̃σ, (24)

where βσ is a fixed scalar quantity, gsw,σ and gsσ,a are com-
puted as in equations A-2 and B-9 respectively, and g̃σ
is assumed normalized in amplitude. Similarly to βεr a
larger value of βσ will result in better depth resolution.

The weights βεr and βσ play an important role in recov-
ering the subsurface parameters. In our numerical results
we have found that when the GPR data has a small signal-
to-noise ratio it is beneficial to use values close to one and
when the signal-to-noise ratio is large, values smaller than
one give better results. However, regardless on how good
the signal-to-noise ratio is in the GPR data using the ER
data in a joint inversion proves to have better results with

comparatively stronger results when the GPR data ex-
hibits strong attenuation.

We define our joint inversion of GPR envelope and ER
data by minimizing the following objective function,

{εr∗,σ∗} = arg min Θ̃w(εr, σ; dow, dow,a)+

Θdc(σ; dodc).
(25)

At a given iteration of our joint inversion (whose work-
flow is as in Figure 1) we replace ∆εr and ∆σw by those
computed in equations 22 and 24. The updated values for
σ and εr are made as in equations 17 and 18.

We will refer to this inversion method (i.e. optimizing
equation 25) as JEN.

Joint inversion with cross-gradients

In this section we assume electrical permittivity and con-
ductivity share structural properties. At a given itera-
tion we want the structure of εr to be shared onto σ and
vice-versa, and we want to do so by respecting the dif-
ferent concavities εr and σ may have. For this reason we
choose the discrete cross-gradient operator τ as a measure
of structure Gallardo and Meju (2003),

τ (εr, σ) = ∇x εr ×∇x σ, (26)

where ∇x denotes the discretized finite-difference spatial
operator (∂x, ∂z), and minimize the objective function Θτ ,

Θτ (εr, σ) =
1

2
||τ ||22. (27)

Because we are modeling the full physics of both the GPR
and ER experiments and we compute the gradients of our
objective functions using an FWI and adjoint method ap-
proach, our method differs from the original method of
Gallardo and Meju (2003) since we choose to not com-
pute the sensitivity matrices of our data. The result is
that at each iteration of our joint inversion (whose work-
flow is shown in Figure 2) we optimize equation 27 using a
Gauss-Newton approach from which we only use the mas-
ter updates ∆στ,◦ and ∆εr,τ,◦. These updates are the
cumulative sum of all updates done in the Gauss-Newton
optimization routine. For example, let ∆εr,τ,◦ and ∆εr,τ
be the Gauss-Newton updates of the first and second it-
eration respectively for optimizing Θτ with respect to εr.
Before the third iteration, the master update ∆εr,τ,◦ takes
the form,

∆εr,τ,◦ ← ∆εr,τ,◦ + ∆εr,τ . (28)

This procedure is then repeated at each iteration. The full
details of optimizing equation 27 and computing ∆στ,◦
and ∆εr,τ,◦ are explained in Appendix C.

We observe that minimizing Θτ in this way (1) has good
potential for a well posed problem because the number of
data points is equal to the number of unknowns (all the
points in our model domain), (2) is relatively cheap in
computation time and memory, (3) can be done by mod-
ifying both εr and σ or by keeping one fixed and only
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modifying the other, and (4) enables us to port the infor-
mation of minimizing Θτ into our scheme for optimizing
Θw and Θdc without having to use second order optimiza-
tion methods, i.e. the Hessians of Θw and Θdc.

Figure 4 gives an example of the different possibilities
for minimizing Θτ outlined in observation (3). Given hy-
pothetical values for εr and σ in Figures 4a and 4b, at a
given iteration we minimize Θτ in three different ways. In
Figures 4c and 4d we update εr and σ, in Figure 4e we fix
σ and update εr, and in Figure 4f we fix εr and update
σ. Note that in this example both εr and σ have different
concavities and different shapes, i.e. σ is wider than εr,
mimicking the different resolutions our joint inversion is
able to obtain from these two different parameters. The
dashed circles are of fixed radii in all panels and serve as
markers for the underlying shapes.

When optimizing Θτ for both σ and εr as shown in
Figures 4c and 4d, both σ and εr are modified and re-
shaped to look more like one another since they are jointly
updated. Figure 4e shows εr expanding towards the outer
circle, appearing even more similar to σ in Figure 4b than
that of Figure 4c. Figure 4f shows σ contracting into the
inner circle, appearing even more similar to εr in Figure
4a than that of Figure 4d.

Depending on the subsurface material properties, the
sensitivities of the GPR and ER data might resolve better
at earlier iterations either εr or σ. Whichever subsurface
parameter is best resolved first should inform the other
about its structural properties. Because of this reason
and observations (1)-(4) above we choose to optimize Θτ

twice per iteration: once modifying σ and keeping εr fixed
and a second time modifying εr and keeping σ fixed. Each
optimization has unique weights bσ and bεr that identify
how much confidence we give to the current solutions of
either εr or σ.

We define our joint GPR and ER with cross-gradient
by minimizing the following objective function,

{εr∗,σ∗} = arg min Θw(εr, σ; dow)+

Θdc(σ; dodc) + Θτ (εr, σ).
(29)

At each iteration of our joint inversion we begin with esti-
mates of εr and σ. The joint update for the conductivity
first involves keeping εr fixed and computing the update
∆στ,◦ given by equation C-7 that optimizes Θτ . Then we
compute the weight bσ and scale ∆στ,◦,

bσ =

(
hσ
adc
aw
− (hσ − dσ) adc •

)
aw,

∆στ,◦ ← bσ ∆στ,◦,

(30)

where adc • is the value of adc in the first iteration, ∆στ,◦
is assumed normalized in amplitude. The scalars dσ and
hσ control how early and how much in the joint inversion
should the structural information of εr is to be imprinted
in σ.

Figure 2 depicts the optimal path of bσ throughout the
iterations. During early iterations bσ is small because not
enough structure has been recovered on εr, but at late

iterations bσ is larger because εr is closer to its true so-
lution. The value of bσ at a given iteration is a measure
of how much confidence we have on the structure of the
current solution for εr: the larger bσ the more confidence
we have on εr.

We note that the upward trend of bσ over iterations can
only be achieved if

hσ ≥ dσ > 0, (31)

which also forces bσ to plateau to the value hσ in late itera-
tions so as to inhibit dominance of the structural assump-
tion and let the physics of our inversions assume control.
The purpose of dσ is to control the value of bσ for the first
iteration: bσ = dσ adc •.

The new update ∆στ,◦ is now passed to the GPR and
ER optimization routines before the step-sizes of the gra-
dients are computed,

gsw,σ ← gsw,σ + ∆στ,◦,

gsdc ← gsdc + ∆στ,◦,
(32)

where both gsw,σ and gsdc are assumed normalized in am-
plitude. The step-sizes of the gradients gsw,σ and gsdc are
computed as described in Domenzain et al. (2019) and the
updates ∆σw and ∆σdc are computed as in equations 12
and 13. Finally, the updated value for σ is calculated as
in equation 17.

Figure 2 shows a code-flow diagram of our joint inver-
sion with the cross-gradient. The next step in our joint
inversion is the structural update to εr which is analo-
gous to the update we just computed for σ. We keep σ
fixed, compute ∆εr,τ,◦ given by equation C-6, compute
the weight bεr and scale ∆εr,τ,◦,

bεr =

(
hεr

adc
aw
− (hεr − dεr ) adc•

)
aw,

∆εr,τ,◦ ← bεr ∆εr,τ,◦,

(33)

where ∆εr,τ,◦ is normalized in amplitude. The new update
∆εr,τ,◦ is now passed to the GPR optimization routine
before the step-size of the gradient is computed by

gsεr ← gsεr + ∆εr,τ,◦, (34)

where gsεr is assumed normalized in amplitude. The up-
dated value for εr is calculated by equation 18 where the
update ∆εr is given in equation 14.

The weights hεr and dεr are not necessarily equal to
hσ and dσ, but bεr must follow a similar shape as bσ (see
Figure 2). Similar to bσ, the value of bεr at a given itera-
tion is a measure of how much confidence we have on the
structure of the current solution for σ: the larger bεr the
more confidence we have on σ.

Because hσ and hεr regulate how large bσ and bεr can
become over the course of iterations, we propose two gen-
eral rules on choosing hσ and hεr based on how much
conductivity is present in the subsurface:

1. if conductivity is low hεr should be small and hσ
large,
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2. if conductivity is high hσ should be small and hεr
large.

We recognize that in a real scenario we might not know
a-priori the conductivity of the subsurface, however we
can obtain a good enough approximation for determining
hσ and hεr by observing the ER pseudo-sections and as-
sessing how many reflection events are visible in the GPR
shot-gathers.

We will refer to this inversion method (i.e. optimizing
equation 29) as JOIX.

Joint inversion of GPR envelope and ER
data with cross-gradient

Now that we have enhanced our joint inversion of GPR
and ER data (Domenzain et al., 2019) with an envelope
objective function for the GPR data and with structural
similarities of subsurface electrical properties, we develop
a third method that joins these two enhancements into
one single inversion procedure. The joint GPR envelope
and ER data with cross-gradient inversion minimizes the
following objective function,

{εr∗,σ∗} = arg min Θ̃w(εr, σ; dow, dow,a)+

Θdc(σ; dodc) + Θτ (εr, σ).
(35)

At a given iteration we first compute ∆στ,◦ as in equation
30, and then add this information to the gradients gsw,σ
and gsdc normalized in amplitude given by equations A-2
and A-4,

gsw,σ ← gsw,σ + βσ gsσ,a + ∆στ,◦,

gsdc ← gsdc + ∆στ,◦.
(36)

Once the gradients from all sources have been computed,
we find the updates ∆σw and ∆σdc as given by equations
12 and 13. Then we can compute ∆σ with equation 16
and update σ as in equation 17.

In order to compute ∆εr we first compute ∆εr,τ,◦ as
in equation 33 and then add this information to gsεr and
gsεr,a normalized in amplitude as given by equations A-3
and B-10,

gsεr ← gsεr + βεr gsεr,a + ∆εr,τ,◦. (37)

Once all gradients for all sources have been computed we
find ∆εr as given by equation 14. Finally we update εr
as in equation 18. The code-flow diagram in Figure 2
also describes this procedure with gradients computed by
equations 36 and 37.

We will refer to this inversion method (i.e. optimizing
equation 35) as JENX.

Choice of weights

In order to join the objective functions Θ̃w ,Θdc and Θτ

we have introduced 11 weights. Our joint inversion re-
quires 5 (equation 15), the envelope inversion requires 2

(equations 21 and 23) and the cross-gradient inversion re-
quires 4 (equations 30 and 33). Aside from the consid-
erations given for each inversion routine, our numerical
results show that when all weights are non-zero they all in-
fluence each other. In some cases the influence the weights
exert on each other can lead to a different behavior in the
inversion than what was explained in the previous sec-
tions.

We observe that the conductivity solution influences the
permittivity solution in a stronger way than the permit-
tivity solution influences the conductivity solution. More-
over, because of the weak sensitivity the GPR data has on
the conductivity, obtaining a good solution for the con-
ductivity is most efficiently achieved by joining the ER
data (Domenzain et al., 2019). Therefore, we assume we
are already satisfied with the joint weights of equation 15
and focus on improving the permittivity and conductivity
solution with weights for Θ̃w or Θτ .

Let us first assume the conductivity of the subsurface
is low and the GPR data holds enough information for
a good solution of the permittivity. If we increase βσ or
hσ (in equations 36 and 30) for a better depth or spatial
resolution of σ we pay the price of degrading the spatial
and amplitude resolution of εr.

Let us now assume the conductivity in the subsurface is
high and the GPR data does not hold enough information
for a good estimate of the permittivity but the ER data is
enough for a good solution of the conductivity. Contrary
to the above scenario, in this case it is possible to exploit
the good solution of σ and the low frequency content of
the GPR data in order to improve εr. Our approach con-
sists of over-weighing the envelope of the GPR data and
relying on the cross-gradients to regulate the excess of the
low-frequency content. We choose negative weights bεr
and bσ for the cross-gradient updates in order to trim off
the low-frequency over-fit. The use of negative weights on
Θτ to counteract an overfit due to Θ̃w is a novel approach
to effectively using both of cross-gradients and the enve-
lope transform as it takes into account the sensitivities of
both objective functions at each iteration. The descent
direction for the εr solution is ensured by computing the
step-size for the updates with a parabolic line search as
explained in Domenzain et al. (2019).

We recognize that all 11 weights were found by trial and
error. In the low-conductivity scenario we followed the
qualitative guidelines explained in the previous sections
and shown in Figure 2. For the high-conductivity scenario
the negative weights (hεr , dεr , hσ and dσ) were chosen in
order for bεr and bσ to smoothly decrease magnitude in
absolute value as iterations progressed. This choice results
in more low-frequency content trim-off at early iterations
and less at later iterations.

SUBSURFACE SIMULATIONS

Recovering electrical permittivity and conductivity of the
subsurface using full-waveform inversion of one-sided ac-
quired GPR data can be challenging if low frequencies
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are sparse and attenuation is high. Furthermore if the
subsurface geometry has velocity and attenuation anoma-
lies larger than a wavelength of the GPR signal the data
might miss amplitude information to accurately recover
said anomalies. Recovering electrical conductivity of the
subsurface at depth using one-sided acquired ER data is
limited by needing large offsets. Furthermore if the sub-
surface has electrical conductivity anomalies smaller than
the receiver electrode distance, the ER data cannot spa-
tially resolve said anomaly.

Joining GPR and ER data (whose different sensitivities
compliment each other by sharing electrical conductivity)
can better resolve subsurface electrical properties given
that both GPR and ER data hold enough information
about the subsurface. However if the subsurface is poorly
conductive the ER data might have little sensitvity to
changes in the conductivity when compared to the GPR
data. Conversely, if the subsurface is highly conductive
the ER data might have a larger sensitvity to changes in
the conductivity when compared to the GPR data.

In view of these observations and in an effort to keep our
analysis as simple as possible we choose to test our algo-
rithms on two synthetically designed subsurface scenarios:
one with low and one with high electrical conductivity as
shown in Figures 5a and 5b and Figures 5a and 5c. Both
scenarios have the same subsurface geometry: an electri-
cal velocity and conductive box-anomaly in the center and
a velocity reflector at depth. The box is 1 × 1m wide: two
wavelengths long but just within the limit of our chosen
ER experiment spatial resolution.

Finally, we implement our algorithm with all objec-
tive functions in a realistic scenario resembling an allu-
vial aquifer as shown in Figures 6a and 6c. Our syn-
thetic aquifer loosely follows the subsurface geometry of
the Boise Hydrogeophysical Research Site (BHRS) as im-
aged by Bradford et al. (2009a) and mapped by Barrash
and Clemo (2002). The electrical parameters resemble
those of dry gravel on the shallow layer and a variety of
moist sands in the deeper layers, with wetter sands (but
not saturated) to the left of the model. The dipping shal-
low layer is at most two wavelengths deep and just within
our ER spatial resolution. The wet region acts both as
a strong reflector and as attenuative media for the radar
data. We note that by choosing this synthetic model, our
data resembles a realistic field acquisition scenario.

In an effort to clarify our method, all inversions assume
the GPR source wavelet is known. Moreover, our scheme
can easily incorporate radar source estimation schemes
such as Pratt et al. (1998) and Ernst et al. (2007a).

In the reminder of this section we address each of our
three synthetic scenarios: (i) low conductivity, (ii) high
conductivity and (iii) the synthetic alluvial aquifer. For
each of our synthetic models, (a) we explain the experi-
ment design and choice of the initial models used in our in-
versions, (b) show results for each of our inversion schemes,
and (c) discuss our results.

Experiments

Low & high conductivity

We model 250MHz GPR antennas with a Ricker wavelet
source. We apply 20 equally spaced sources on the air-
ground interface with source-receiver near-offset of 0.5m
(approximately one wavelength) and receiver-receiver dis-
tance a quarter of a wavelength as shown in Figure 5a. For
the ER experiment we use 17 electrodes placed 1m away
from each other on the air-ground interface (see Figure
5b) and perform all possible dipole-dipole and Wenner
array configurations.

The synthetic GPR and ER data are then given ran-
dom white noise with amplitude of 10% of their standard
deviation as explained in Domenzain et al. (2019). See
Figures 7 and 8 for the acquired data in both scenarios.
Note that for the high-conductivity scenario the signal in
the GPR data is very weak, and near where the box re-
flection event should be the signal-to-noise ratio is almost
1, while for the low-conductivity scenario the GPR data
shows strong reflections.

All inversions have a starting homogeneous model for
both permittivity and conductivity: a value of 4 for per-
mittivity, and values of 1mS/m and 5mS/m for the low
and high-conductivity scenarios respectively.

Synthetic alluvial aquifer

We use the same acquisition geometry as for the low and
high conductivity experiments (see Figures 5a and 5b).
Given the complicated subsurface geometry, we enhance
the ER experiment with all possible Schlumberger arrays.
All our data are given random white noise analogous to the
low and high conductivity scenarios. To aid our analysis
we place boreholes B1, B2 and B3 as shown in Figures 6a
and 6c.

Figure 6b shows the initial permittivity and Figure 6d
the initial conductivity used in our inversions. Our nu-
merical experiments suggest a very strong sensitivity to
the first layer in our initial models throughout our inver-
sions. We choose a smooth initial model that accurately
resolves the first air-wave refraction in the GPR data and
qualitatively follows the shape of the low-velocity region
in length. Figure 9a gives the residual of the initial and
observed GPR data: all reflection events below the first
air-wave refraction are present.

In Appendix D we give the details for choosing and
building our initial models. The strategy consists in per-
turbing the true model in two different ways. First, we
smooth it enough to loose depth resolution of the first
layer and lateral resolution of the low-velocity region. As
a second approach, we smooth the true model below the
first layer but retain the true model for the first layer.
The smoothing is done with a gaussian low-pass filter in
the space frequency domain with a half-width of 0.8 1/m.
The initial model in Figures 6b and 6d is an intermedi-
ate step between the first and second perturbations. It
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is described in Appendix D. We note that although de-
manding, these initial models are representations of the
long wavelength structure that could realistically be ob-
tained from reflection tomography and careful analysis of
direct arrivals.

Results

Low conductivity

Figures 10a and 11a show the recovered parameters for
the low-conductivity case using joint inversion of GPR
and ER data and using the weights in the first column
of Table 2. We see the shape and amplitude of the box
recovered in the permittivity solution together with high
spatial-frequency artifacts around the box mainly due to
one-sided acquisition and noise in the data. The recovered
conductivity also exhibits high spatial-frequency artifacts
around the box and a strong amplitude from the permit-
tivity bottom reflector due to the GPR data being unable
to distinguish permittivity from conductivity reflections.

Figures 10b and 11b show the recovered parameters for
the low-conductivity case using joint inversion of GPR en-
velope and ER data and using the weights in the second
column of Table 2. In the recovered permittivity we note
less high spatial-frequency artifacts than in the joint in-
version case (see Figure 10a), although the price to pay is
a lower resolution of the box. The recovered conductivity
shows better amplitude resolution although the bottom
permittivity reflector is now thicker than in the joint in-
version case (see Figure 11a) due to the larger weighing
of the GPR low frequency.

Figures 10c and 11c show the recovered parameters for
the low-conductivity case using joint inversion of GPR
and ER data with cross-gradients and using the weights
in the third column of Table 2. We see the permittivity
solution is very similar to the joint inversion result (Figure
10a). However, the recovered conductivity has a more
even spread in amplitude resolution compared to the joint
and envelope inversion and the artifact amplitude of the
permittivity reflector is now less as compared with Figures
11a and b.

Figures 10d and 11d show the recovered parameters
for the low-conductivity case using joint inversion of GPR
envelope and ER data with cross-gradients and using the
weights in the fourth column of Table 2. The permittivity
solution is again very similar to the results of Figures 10a
and c but the conductivity solution is now slightly better
than the rest of the inversion results by having a more
localized resolution around the box.

High conductivity

Figures 12a and 13a show the recovered parameters for the
high-conductivity case using joint inversion of GPR and
ER data with weights as in the first column of Table 3. We
note very weak amplitude and low spatial-frequency reso-
lution on the recovered permittivity due to strong atten-

uation and a signal-to-noise ratio equal almost to 1 in the
region of the box reflection event. The recovered conduc-
tivity exhibits better low spatial-frequency content than
the low-conductivity case, however, there are stronger am-
plitudes near the top of the box than at depth.

Figures 12b and 13b show the recovered parameters for
the high-conductivity case using joint inversion of GPR
envelope and ER data with weights as in the second col-
umn of Table 3. The recovered permittivity now exhibits
less high-spatial frequency content than in the joint inver-
sion of GPR and ER case (see Figure 12a) and a small
increase in amplitude resolution near the box anomaly.
For the recovered conductivity we note a slight increase
in amplitude resolution at depth.

Figures 12c and 13c show the recovered parameters for
the high-conductivity case using joint inversion of GPR
and ER data with cross-gradients and weights as in the
third column of Table 3. We see the improved amplitude
resolution in the region where the permittivity box lies,
although the overall shape is missing low spatial-frequency
information. The recovered conductivity now has a better
depth amplitude resolution as compared with the joint
GPR and ER and joint GPR envelope and ER inversions
(see Figures 13a and 13b).

Figures 12d and 13d show the recovered parameters for
the high-conductivity case using joint inversion of GPR
envelope and ER data with cross gradients and weights as
in the fourth column of Table 3. The permittivity anomaly
is now recovered with an accurate amplitude and overall
correct shape, however we observe an overshoot of low
spatial-frequency content as a remanent artifact from the
conductivity solution and the smoothing factor in the gra-
dients. The recovered conductivity however, is now more
accurate at depth and a better overall spatial resolution
than the rest of the inversions.

Synthetic alluvial aquifer

In Lavoué et al. (2014) the authors invert GPR surface
acquired data of a synthetic realistic subsurface scenario.
The authors use a full-waveform approach and they note
that regularization is needed for constraining the conduc-
tivity solution. In this work, we apply no additional regu-
larization of the inversion beyond the joint objective func-
tion itself and the cross-gradients constraint.

Similar to our discussion for low and high conductiv-
ity, we performed all our inversions (Joint, JEN, JOIX,
JENX) on the synthetic alluvial aquifer with inversion pa-
rameters as in Table 4. Figure 14 shows the recovered per-
mittivity and Figure 15 shows the recovered conductivity
for all inversions.

In Figure 14 for all inversions we see artifact ripples in
the first layer. These ripples are due to the small discrep-
ancy between values of the true and initial model (ap-
proximately 2.5% in the first layer). Similar lower space-
frequency artifacts are also present in the recovered con-
ductivity (see Figure 15).

Throughout Figure 14 we see the effect of having such
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a high impedance contrast between the first layer and the
low-velocity region: one-sided acquisition struggles to re-
solve the immediate section of the region below the first
layer. As seen in Appendix D, this effect can be drasti-
cally reduced in the entire domain if the first layer of our
model is more accurately resolved in the initial models.

If the subsurface anomalies are larger than a wave-
length, resolving the region of the intrusion below the

first layer can be very challenging to resolve using only
GPR data. Relying on the envelope of the GPR data
(Figures 14b and 14d) to correct it can cause overshooting
the solution. However, by using the ER sensitivity of the
conductivity and the cross-gradients constraint we help
mitigate this effect. By doing so, we retain the right values
of permittivity and resolve the corner of the low-velocity
region, see Figure 14c and Figure 15c. The cross-gradients
constraint also helps stabilize the inversion by enabling to
run more iterations without strong artifacts appearing in
the recovered parameters.

We show the borehole data for the JOIX inversion (see
Figure 14c and Figure 15c) in Figure 16 and Figure 17 for
permittivity and conductivity respectively. In Figure 16
we see that despite underestimating the parameters in the
initial model, the permittivity solution accurately approx-
imates the correct values. We also note that permittivity
values at depth lack precission. However, the inversion
accurately locates the location of boundaries, and it does
so approximating the right impedance value.

In Figure 17 we also note a lack of accuracy at depth for
the recovered conductivity. Similar to the inherent lack of
sensitivity in the GPR data due to two-way travel, the
ER data is mostly sensitive in an upside-down trapezoid
region below the survey line. The sensitivity of the ER
data is mostly appreciated in Figure 15, where the con-
ductivity is mostly resolved in a trapezoid region. Figure
17c also exhibits the lack of GPR and ER sensitivity at
depth, where although the data is sensitive to impedance
contrasts, it is not capable of resolving the correct mag-
nitude for the conductivity.

Figure 18b gives the recovered GPR data for shot-gather
#7 and Figure 18c gives both the observed and recovered
ER data. We note that most of the reflection events of
the observed GPR data below the air-wave refraction are
recovered in Figure 18b. Figure 9b shows the residual of
the recovered and observed GPR data. We see that the
first and second air-wave refraction are recovered, and the
corner of the low-velocity region is resolved up to the noise
level. At early times we also note in Figure 9b the artifact
ripples in the first layer that the inversion has introduced.

Discussion

Low & high conductivity

Our numerical results show that all the different objective
functions Θ̃w ,Θdc and Θτ influence each other when com-
pared to their individual inversions. For both the low and
high-conductivity scenarios we find the best results when

combining all the objective functions noting improvements
in high and low spatial-frequencies, and enhancing ampli-
tude resolution both of the box anomaly and at depth.

In all cases we find the conductivity solutions are signif-
icantly of lower spatial resolution when compared to the
permittivity solutions. This is due to the inherent spatial
resolution limitations of the ER data and the attenuation
driven sensitivity of the GPR data to conductivity.

In the low-conductivity scenario we observe a gradual
improvement in the conductivity solution by introducing
the objective functions Θ̃w ,Θdc and Θτ . We quantify this
improvement by computing the absolute RMS error of the
true and recovered conductivity for each method in a re-
gion around the box-anomaly and shown in the second
column of Table 5. However, the improvement in the con-
ductivity solution slightly degrades the best result for the
permittivity solution as shown in the first column of Table
5. The average of both the permittivity and conductivity
RMS absolute errors is displayed in the third column of
Table 5, indicating that the Joint inversion of GPR and
ER data with cross-gradients gives the best overall result.

In the high-conductivity case it is more clear how both
the permittivity and conductivity solutions improve when
introducing all objective functions. We quantify our in-
version results in Table 6, which is analogous to Table
5 but for the high-conductivity scenario. The smallest
RMS errors for both parameters are given by introducing
all Θ̃w ,Θdc and Θτ objective functions.

We conclude that in the low-conductivity scenario where
the GPR data is strongly sensitive to permittivity, im-
proving the conductivity solution costs a slight degrada-
tion of the permittivity solution. In the high-conductivity
scenario where the GPR data is strongly affected by at-
tenuation (and thus a lower signal-to-noise ratio), we can
improve the permittivity solution by directly using data
that is not directly sensitive to permittivity, i.e. ER data
using cross-gradients.

Because on average for both low and high-conductivity
scenarios the best recovered parameters are obtained us-
ing all objective functions (see third column of Tables 5
and 6), given field GPR and ER data we recommend us-
ing all objective functions. In the case where the GPR
data is strongly sensitive to permittivity we advice cau-
tion with overweighing the envelope gradients of Θ̃w while
more leeway can be given to Θτ in order to improve the
conductivity solution. In the case the GPR data is weakly
sensitive to permittivity, we recommend strong weighing
on Θτ in order to exploit the ER data for the benefit of
the permittivity solution.

Synthetic alluvial aquifer

Compared to the low and high conductivity examples, the
initial model we used for the synthetic alluvial aquifer
holds much more low-spatial frequency content of the sub-
surface. This mostly impacts two aspects of the inversion:
1) the initial conductivity model already describes the ER
data pretty well, yielding the sensitivity of the ER is weak.



Joint inversion of GPR and ER data 11

2) Using the envelope of the GPR data inhibits the FWI
gradient to fully exploit high spatial-frequency features.
In this case, the permittivity sensitivity given by the GPR
data can be exploited to improve the spatial resolution of
the recovered conductivity with the cross-gradients con-
straint. We find the better results by completely muting
the envelope weighting. This weighting strategy is in ac-
cordance with the low and high-conductivity discussion
above. The cross-gradients constraint on the permittiv-
ity enhances low spatial-frequency content on the GPR
sensitivity, keeping the inversion artifact-free for more it-
erations.

Figure 19a shows the weights aw and adc as a function
of iterations. We choose a very small starting value for
adc in order to let the GPR sensitivity resolve the missing
high-spatial frequency content. In Figure 19b we see that
most of the model is resolved in the first 50 iterations.
The next 50 iterations resolve mostly the ER data. After
150 iterations the parameters are resolved within the res-
olution of our methods since no relevant change occurs.
Later iterations keep improving the permittivity and con-
ductivity solutions by filling high spatial-frequency details
like for example, the corner of the low-velocity region.

CONCLUSIONS

We have developed a joint inversion algorithm for one-
sided acquired full-waveform GPR and ER data. The al-
gorithm directly joins GPR and ER data, the envelope
of the GPR data, and structural information of the pa-
rameters using a modified cross-gradients approach. Our
three-for-one algorithm manages how much information
form each sensitivity is used in the inversion. This algo-
rithm manages effects of strong attenuation and enhances
low spatial-frequency content in the recovered electrical
permittivity and conductivity.

We tested our inversion scheme on synthetic noisy data
and found that even in regions of high attenuation where
the GPR data has a signal-to-noise ratio close to one we
are able to recover accurate enough subsurface electrical
properties. In regions where the attenuation is present
but not strong we are able to improve the low spatial-
frequency content and accurately resolve sharp boundaries
of the recovered parameters.

By joining GPR with ER data we exploit the linkage
given by Maxwell’s equations of electrical conductivity in
both GPR and ER experiments. Borrowing from seis-
mic FWI we use the envelope of the GPR data to better
resolve amplitudes at depth and improve the low-spatial
frequency content. We have modified the original cross-
gradient scheme to fit with our full-physics inversion with-
out the need for computing sensitivity matrices of the data
or Hessians of the objective functions.

We note that with field data scenarios it might be the
case that the more attenuation in the GPR data the more
sensitive to the subsurface the ER data might be (high-
conductivity scenario), and the less attenuation in the
GPR data the less sensitive to the subsurface the ER data

might be (low-conductivity scenario). However, our algo-
rithm accounts for both scenarios.

We tested our algorithm on a realistic scenario based
on an alluvial aquifer deposit. We find that the choice
for an initial model greatly impacts the recovered param-
eters. The best results were found using a smooth ve-
locity model accurate in shallow depths. We note that
although demanding, our initial models may be possible
to realize with field data using existing workflows such as
reflection-traveltime and ER tomography. Our regular-
ization strategy relies on letting the GPR and ER data
regularize each other, together with cross-gradients con-
straints on both permittivity and conductivity. Albeit an
initial model, no further a priori information is needed.

Even though we have presented 2D results our algo-
rithm can take into account 3D structure by using 3D
GPR and ER forward models. An important caveat of
our scheme is assuming ER and GPR are sensitive to a
unique electrical conductivity, and in doing so we do not
account for frequency dependent conductivity. While in
some limited types of materials this approximation is rea-
sonable, in general it is not adequate. Future work will
be focused toward accounting for apparent conductivity
differences at DC and radar frequencies.

Figure 1: Inversion algorithm for Joint and JEN. We dif-
ferentiate Joint and JEN by how we compute ∆σw and
∆εr.
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Figure 2: Qualitative optimal shape for weights through-
out iterations for all inversion schemes (Joint, JEN, JOIX
and JENX). Because the ER data struggles to resolve the
conductivity at depth in early iterations and the GPR
data first resolves the structure of the model, the weight
aw is given a larger value than adc at early iterations.
Once the GPR data has resolved enough structure, the
roles of aw and adc are reversed. The envelope weights
βεr and βσ remain constant through the inversion. The
cross-gradient weights bεr and bσ increase their contribu-
tion throught the inversion as the parameters are better
resolved.

Low σ Joint JEN JOIX JENX
adc • 0.85 0.85 0.85 0.85
ȧdc 3 3 3 3

Θ̇dc 2 2 2 2
ȧw 4 4 4 4

Θ̇w 0.9 0.9 0.9 0.9
βεr 0.25
βσ 0.25 1e-5
hεr 0.01
dεr 0.1
hσ 1e-3
dσ

Table 2: Inversion parameters for the low-conductivity
scenario.

APPENDIX A

GPR AND ER GRADIENTS

We obtain the gradients gsw,σ and gsεr of Θs
w with respect

to σ and εr following Meles et al. (2010) and Domenzain

Figure 3: Inversion algorithm for JOIX and JENX. We
differentiate JOIX and JENX by how we compute ∆σw
and ∆εr.

Figure 4: Illustration of cross-gradient possibilities. Given
estimates εr and σ in a and b, Θτ is minimized by updat-
ing both εr and σ in c and d, updating εr and keeping
σ fixed in e, and updating σ keeping εr fixed in f. The
dashed circles are constant markers for the widths and
centers of the gaussian shapes in the given estimates of εr
and σ.
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High σ Joint JEN JOIX JENX
adc • 0.85 0.85 0.85 0.87
ȧdc 1.5 1.5 1.5 1.5

Θ̇dc 1.5 1.5 1.5 1.5
ȧw 2.5 2.5 2.5 2.5

Θ̇w 0.9 0.9 0.9 0.9
βεr 1 0.5
βσ 1 0.5
hεr 0.2 -0.3
dεr 0.6 -3
hσ -0.16
dσ -0.6

Table 3: Inversion parameters for the high-conductivity
scenario.

Figure 5: True permittivity a and conductivity for the low
b and high c conductivity scenario. In a, an example of
GPR receivers (cyan) and source (red). ER electrodes are
shown purple in b.

Figure 6: Synthetic alluvial aquifer true and initial pa-
rameters. True a and initial b permittivities. True c and
initial d conductivities. The cyan lines represent bore-
holes B1, B2 and B3 from left to right.

Figure 7: GPR shot gather # 7 of the low and high-
conductivity scenarios and their respective best recov-
ered parameters as given by Figures 10-11 d for the low-
conductivity and 12-13 d for the high-conductivity sce-
nario. Amplitudes are clipped to 1.5% of the maximum
amplitude in the data.
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Figure 8: ER data of the low a and high b conductivity
scenarios and their respective best recovered parameters.

Figure 9: Residuals of GPR shot-gather #7 for the syn-
thetic alluvial aquifer. Residual of initial model and ob-
served in a, and of recovered and observed in b. Recov-
ered data correspond to the JOIX method. Amplitudes
are clipped to 1.5% of the maximum amplitude in the
data.

adc • ȧdc Θ̇dc ȧw Θ̇w βεr βσ hεr dεr hσ dσ iterations
Joint 0.2 3 2 1.5 0.3 129
JEN 0.2 3 2 1.5 0.3 0.5 0.5 89
JOIX 0.2 3 2 1.5 0.3 −10−3 -0.4 −10−4 -0.1 400
JENX 0.2 3 2 1.5 0.3 0.5 0.5 −10−3 -0.2 −10−4 -0.1 155

Table 4: Inversion parameters for the synthetic alluvial
aquifer.

Figure 10: Recovered permittivity with low conductivity
using Joint in a, JEN in b, JOIX in c and JENX in d.

Low σ εr σ average
Joint 0.3691 0.4927 0.4309
JEN 0.3742 0.4972 0.4357

JOIX 0.3682 0.4912 0.4297

JENX 0.3697 0.4908 0.4303

Table 5: RMS error and average of the RMS errors for all
inversion methods of the true and recovered parameters
for the low-conductivity scenario. The region where the
errors were calculated is the band between 8 and 12 m in
length. The boxed results are the smallest value of each
column.
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Figure 11: Recovered low conductivity using Joint in a,
JEN in b, JOIX in c and JENX in d.

High σ εr σ average
Joint 0.3708 0.5012 0.4360
JEN 0.3644 0.4992 0.4318
JOIX 0.3666 0.4976 0.4321

JENX 0.3642 0.4915 0.4278

Table 6: RMS error and average of the RMS errors for all
inversion methods of the true and recovered parameters
for the high-conductivity scenario. The region where the
errors were calculated is the band between 8 and 12 m in
length. The boxed results are the smallest value of each
column.

Figure 12: Recovered permittivity with high conductivity
using Joint in a, JEN in b, JOIX in c and JENX in d.



16

Figure 13: Recovered high conductivity using Joint in a,
JEN in b, JOIX in c and JENX in d.

Figure 14: Recovered permittivity for the synthetic allu-
vial aquifer using Joint in a, JEN in b, JOIX in c and
JENX in d.
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Figure 15: Recovered conductivity for the synthetic allu-
vial aquifer using Joint in a, JEN in b, JOIX in c and
JENX in d.

Figure 16: Recovered permittivity of the synthetic alluvial
aquifer using the JOIX method on boreholes B1, B2 and
B3 in a, b and c respectively. True is solid black and
initial model is dashed blue.

Figure 17: Recovered conductivity of the synthetic allu-
vial aquifer using the JOIX method on boreholes B1, B2
and B3 in a, b and c respectively. True is solid black and
initial model is dashed blue.

Figure 18: Synthetic alluvial aquifer data. Observed a and
recovered b GPR data for shot-gather #7. In c observed
and recovered ER data. Recovered data correspond to
the JOIX method. Amplitudes are clipped to 1.5% of the
maximum amplitude in the data.
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Figure 19: Inversion weights of the synthetic alluvial
aquifer using the JOIX method. In a values of weights
aw and adc over iterations. In b objective function values
for Θw,σ and Θdc.

et al. (2019) using a full waveform inversion approach,

vw = Lw ew(−t), (A-1)

gsw,σ = −
∑
t

u(−t)� vw(t) ·∆t, (A-2)

gsεr = −
∑
t

u̇(−t)� vw(t) ·∆t, (A-3)

where t denotes time, (−t) denotes time reversed, � de-
notes element-wise multiplication, u̇ denotes the time deriva-
tive of u (computed with a numerical finite-difference scheme),
vw is the adjoint wavefield (the back-propagation of er-
rors), and ∆t denotes the discretized time interval.

We compute gsdc using the adjoint potential field vdc
Domenzain et al. (2019),

L>dc vdc = M>
dc edc,

gsdc = Sdcvdc,
(A-4)

where gsdc and vdc are vectors of size nxnz × 1 and Sdc =
−((∇σLdc)ϕ)>.

APPENDIX B

ENVELOPE GPR GRADIENT

In order to apply the FWI scheme with the modified en-
velope data, we first need to deduce a new adjoint source
as a result of the chain rule on our objective function. We
follow Bozdağ et al. (2011) and define the adjoint source of
equation A-1 in the continuous case and then bring it back
to the discrete case. Let u denote the y component of the
electromagnetic wavefield defined in space and time for a
given source. We denote the analytical representation of
u by,

ũ = u+ iû, (B-1)

where the hat denotes the Hilbert transform of u. We will
also refer to the Hilbert transform of u by {u}H . We will
modify the objective function Θw, and that will modify
the adjoint source because of the chain rule on Θw.

The instantaneous amplitude of the wavefield (i.e. en-
velope) is,

ua =
√
u2 + û2. (B-2)

In what follows we will define new objective functions and
find the new adjoint source for them. We will denote
du the derivative with respect to u and use this identity
derived from the definition of the Hilbert transform,

ˆ
f · duĝ dt = −

ˆ
f̂ · dug dt. (B-3)

Let the instantaneous amplitude objective function be,

Θw,a =
1

2

ˆ T

0

e2w,a dt, ew,a = ua − uoa, (B-4)

where the superscript o denotes observed data. We need
the derivative of Θw,a with respect to the parameters, and
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for that we also need duΘw,a since u depends on the pa-
rameters. We have,

duΘw,a =

ˆ T

0

ew,a · duew,a dt,

duew,a = duua,

=
u+ û · duû

u2a
.

(B-5)

We now invoke identity B-3 in duΘw,a,

duΘw,a =

ˆ T

0

ew,a · u
ua

−
{
ew,a · û
ua

}
H︸ ︷︷ ︸

adjoint source

dt.
(B-6)

From equation B-6 we have that in the discrete case for
an observed shot-gather do,sw the adjoint source for the
envelope transformed data is,

sw,a =
ew,a · do,sw

do,sw,a
−
{

ew,a · {do,sw }H
do,sw,a

}
H

, (B-7)

where do,sw,a denotes the envelope of the observed data and
ew,a denotes the residual of the observed envelope data
and the synthetic envelope data. The gradients gsσ,a and
gsεr,a are,

vw = Lw sw,a(−t), (B-8)

gsσ,a = −
∑
t

u(−t)� vw(t) ·∆t, (B-9)

gsεr,a = −
∑
t

u̇(−t)� vw(t) ·∆t. (B-10)

APPENDIX C

MINIMIZING Θτ

We present a Gauss-Newton algorithm for optimizing Θτ

that enables our joint inversion scheme to independently
weigh the structure of σ over εr (or vice-versa).

Let Dx and Dz be the discretized differential operators
in the x and z directions written as matricies of size nxnz×
nxnz,

τ = Dx εr �Dz σ −Dz εr �Dx σ. (C-1)

The derivatives of τ with respect to εr and σ are,

∇ετ = Dx �
[
Dz σ

]
−Dz �

[
Dx σ

]
,

∇στ = Dz �
[
Dx εr

]
−Dx �

[
Dz εr

]
,

(C-2)

where brackets indicate a matrix of size nxnz × nxnz and
all columns of a matrix [a] are the column vector a. Let
J>τ,◦ = ∇◦τ , then the gradients of Θτ are,

gτ,ε = Jτ,ε τ ,

gτ,σ = Jτ,σ τ .
(C-3)

We compute the updates of εr and σ by,

∆εr,τ = −(Jτ,εJ
>
τ,ε + ατ,εI)−1gτ,ε,

∆στ = −(Jτ,σJ>τ,σ + ατ,σI)−1gτ,σ,
(C-4)

where I is the identity matrix of size nxnz×nxnz, and ατ,ε
and ατ,σ are step-sizes for the optimal descent direction
for the previous iteration gradients and are computed with
an n-point parabola approximation. We then normalize
the updates by their largest amplitude and scale them
with their respective current step-sizes. At each iteration,
either εr and σ are updated by,

εr ← εr + ∆εr,τ ,

σ ← σ + ∆στ .
(C-5)

In order to control the weigh of either structures εr or σ
in our joint inversion, at each iteration we store the up-
date information of ∆εr,τ and ∆στ in the master updates
∆εr,τ,◦ and ∆στ,◦,

∆εr,τ,◦ ← ∆εr,τ,◦ + ∆εr,τ , (C-6)

∆στ,◦ ← ∆στ,◦ + ∆στ . (C-7)

We note that in our inversion scheme presented in the
section Joint inversion with cross-gradients we first
optimize Θτ modifying σ and keeping εr fixed, and then
we optimize Θτ modifying εr and keeping σ fixed.

APPENDIX D

INITIAL MODELS FOR THE SYNTHETIC
ALLUVIAL AQUIFER

For the first initial model (see Figure D-1a), we smooth
the true permittivity with a low-pass gaussian filter as to
only allow two characteristic wavelengths in the space-
frequency domain (a gaussian with a half-width of 0.8
1/m). For the second initial model (see Figure D-1b),
we first remove the top layer from the true permittivity
model, we then smooth analogously as for the first initial
model, and then we return the first layer without smooth-
ing. In order to keep the location of the shallow reflector
equal in both initial permittivity and conductivity, we in-
terpolate permittivities to obtain Figures D-1c and D-1d.

Two main differences between the first and second ini-
tial models are that the first initial model does not have
an accurate amplitude in the first layer and does not fol-
low the low velocity region in length. As a result, when
compared to the inversions of the first initial model (Fig-
ures D-1e and D-1g), the second model is visibly able to
resolve all layers in the model with minimal artifacts in
the first layer (Figures D-1f and D-1h). We note however,
that the first initial model is able to correctly identify the
location of the first-second layer boundary.

We choose the initial model for the inversions presented
in the main text as a perturbed true model between the
two initial models presented in this Appendix. First we re-
move the top layer from the true permittivity model, and
then smooth with a low-pass gaussian filter as to only al-
low two characteristic wavelengths in the space-frequency
domain (a gaussian with a half-width of 0.8 1/m). Then
we decrease the values by 4% of the true values, return
the first layer and smooth again as to only allow six char-
acteristic wavelengths in the space-frequency domain (a
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gaussian with a half-width of 2.5 1/m). The initial model
for the conductivity is achieved by interpolation of the per-
mittivity. The result is a smooth initial model with values
4% less than the true model but with a not-so-smooth first
layer interface.

Such a smooth initial velocity model can be achieved
by following the inversion procedure of Bradford et al.
(2009a). This method for estimating an initial velocity
model is robust when air-wave refractions are present in
the data, and resolves the subsurface in a top-down ap-
proach. We conclude that if the GPR field data exhibits
air-wave refractions, the better the initial model fits these
events in the data, the better the inversion results will be.

Figure D-1: Sensitivity analysis of the initial model for the
synthetic alluvial aquifer. In a, b, c and d we have the
first and second initial model for permittivity and conduc-
tivity. In e, f, g and h we have their respective recovered
parameters by using the JOIX method.
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