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ABSTRACT

We develop an algorithm for joint inversion of full-waveform ground-penetrating radar

(GPR) and electrical resistivity (ER) data. GPR is sensitive to electrical permittivity

through reflectivity and velocity, and electrical conductivity through reflectivity and atten-

uation. ER is directly sensitive to electrical conductivity. The two types of data are inher-

ently linked through Maxwell’s equations and we jointly invert them. Results show that

the two types of data work cooperatively to effectively regularize each other while honoring

the physics of the geophysical methods. We first compute sensitivity updates separately

for both the GPR and ER data using the adjoint method, and then we sum these updates

to account for both types of sensitivities. The sensitivities are added with the paradigm of

letting both data types always contribute to our inversion in proportion to how well their

respective objective functions are being resolved in each iteration. Our algorithm makes no

assumption of the subsurface geometry nor structural similarities between parameters with

the caveat of needing a good initial model. We find that our joint inversion outperforms

both GPR and ER separate inversions and determine that GPR effectively supports ER in

regions of low conductivity while ER supports GPR in regions with strong attenuation.
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INTRODUCTION

Imaging electrical properties (e.g. electrical permittivity ε and conductivity σ) is widely

used for environmental and engineering applications. Contrasts in subsurface permittiv-

ity have been used to locate contaminant media (Bradford and Deeds, 2006; Babcock and

Bradford, 2015), availability of water in the subsurface (Benedetto, 2010; Dogan et al., 2011;

Parsekian et al., 2012), measure stratigraphy and volumetric water content in snow (Brad-

ford et al., 2009; Sold et al., 2013; Schmid et al., 2014), find geologic structures (Kjær et al.,

2018) and build hydrogeologic models for water-flow simulations (Knight, 2001). Subsurface

conductivity has been used to quantify water content (Binley et al., 2002; Brunet et al.,

2010; Beff et al., 2013), determine temperature distributions for geothermal exploration

(Fikos et al., 2012; Hermans et al., 2012; Spichak and Zakharova, 2015), assess risk of land-

slides (Jomard et al., 2010; Perrone et al., 2014), monitor carbon-dioxide storage (Bergmann

et al., 2012; Carrigan et al., 2013) and characterize mountain permafrost (Hauck et al., 2003;

Scapozza et al., 2011; Rödder and Kneisel, 2012). Despite the broad range of applications

for mapping electrical properties of the subsurface using GPR and ER methods, often a

choice has to be made in using either method because of their contrasting sensitivities.

GPR is sensitive to electrical permittivity through reflectivity and velocity, and also

sensitive to electrical conductivity through reflectivity and attenuation. However, if atten-

uation is strong in the media of interest the observed waveforms might not contain enough

information to image either the permittivity or the conductivity. ER is directly (and only)

sensitive to electrical conductivity, however if the media of interest has low conductivity, the

measured data might not have enough information to give a meaningful image. Fortunately

GPR and ER data have a complimentary relationship. GPR is sensitive to what ER is not
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(permittivity) and ER is directly sensitive to what GPR is only sensitive by weak reflec-

tions and attenuation (conductivity). Moreover, GPR data gives a higher spatial resolution

image of the media of interest in contrast with the lower spatial resolution obtained with

the ER data.

Even though ray-theory methods for processing GPR data might resolve important fea-

tures of the imaged media (Holliger et al., 2001; Bradford, 2006; Bradford et al., 2009), the

caveat of only using the infinite frequency approximation of the data can lead to unsat-

isfactory results (Johnson et al., 2007; Linde and Vrugt, 2013). Introduced by Tarantola

(1984) in the acoustic regime, full-waveform inversion of electromagnetic data has seen a

steady interest for recovering electrical properties of the subsurface (see Ernst et al. (2007a)

and Meles et al. (2010) for electromagnetic rather than acoustic full-waveform inversion).

While many advances have been made for cross-hole data (Ernst et al., 2007a; Meles et al.,

2010; Klotzsche et al., 2014; Gueting et al., 2017), using full waveform inversion for sur-

face acquired GPR data in the presence of strong attenuative media remains an important

challenge (Lavoué et al., 2014; Schmid et al., 2014).

In Lavoué et al. (2014) the authors perform full-waveform inversions of GPR on two

synthetic examples, one with sources and receivers surrounding the target media and one

with sources and receivers at the surface. When the target media is surrounded by sources

and receivers they are able to recover accurate spatial resolution and values of the electrical

parameters even when their starting models for both permittivity and conductivity are

homogenous. However, when using surface acquired data the conductivity solution lacks

accuracy and spatial resolution at shallow depths and is almost insensitive to sharp contrasts

at depth. Moreover, in this case their starting models for both permittivity and conductivity

are a smoothed version of the true parameters, which assumes a very accurate initial model
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is available. The sharp difference in the resolution of the recovered parameters between

these two synthetic experiments can be attributed to the sparse illumination due to having

just surface acquired data, and shows how ill posed GPR full-waveform inversion can be

when the conductivity is not known a priori.

ER inversion methods using the full response of the measured electric field range in how

the data sensitivities are computed and in how the discretized physics are solved (Loke and

Barker, 1996; Spitzer, 1998; Ha et al., 2006; Pidlisecky et al., 2007; Domenzain et al., 2017).

Overall, the advances of the method have evolved in more accurate discretization schemes

and computationally cheaper inversion routines. Because of the inherent low-spatial and

shallow depth resolution of the ER data, sharp boundaries of the subsurface conductivity

can be challenging to capture without external a priori knowledge of the subsurface or

strong regularization (Hetrick and Mead, 2018).

In order to exploit the complimentary sensitivities of the GPR and ER experiments,

we implement an inversion algorithm that recovers both permittivity and conductivity of

the media of interest by joining the sensitivities of conductivity from both the GPR and

ER data in each iteration of the inversion process. In what follows we make the physical

assumptions of an isotropic linear media where Ohm’s law holds, with no lateral variation

in the y-coordinate, a constant magnetic permeability of µo and frequency independent

electrical parameters.

In recent work regarding GPR full-waveform inversion (Ernst et al., 2007a; Meles et al.,

2010; Klotzsche et al., 2014; Lavoué et al., 2014; Gueting et al., 2017) it has been as-

sumed that electrical conductivity is constant over a bandwidth of the radar signal and

permittivity is frequency independent. Incorporating frequency dependent attenuation for
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a full-waveform inversion approach can be done as in Xue et al. (2017), where the authors

use a modified version of the wave equation (Zhu and Harris, 2014) and develop forward

and adjoint operators that approximate the effects of frequency dependent attenuation.

This enforces a higher computational cost compared to assuming frequency-constant atten-

uation. In Giannakis et al. (2015) the authors develop a 3d finite-difference time-domain

forward model for electromagnetic wave propagation that incorporates frequency dependent

parameters by convolving Debye relaxation mechanisms directly in the wave solver. Their

forward model is capable of accurately predicting the behavior of electromagnetic fields with

frequency dependent parameters but a full-waveform inversion algorithm that accounts for

the convolution of relaxation mechanisms is still to be developed.

Recovering frequency dependent attenuation from surface acquired GPR data can be

done as in Bradford (2007). The method links the attenuation coefficient to a dispersion

relation that is measurable in the GPR data. It is noted that this method does not account

for intrinsic vs scattering attenuation since it does not take into account the full kinematics of

the electromagnetic wave. It is also recognized that because of the inability of GPR data to

recognize reflections due to velocity from reflections due to conductive media, recovering the

full attenuation response requires additional low frequency data. Using the full kinematic

response of GPR on surface acquired data to recover attenuation is a very ill posed problem.

As an example, see the results of Lavoué et al. (2014) on surface acquired data.

In Figure 1-a) and b) we present the real part of the frequency dependent effective con-

ductivity as well as the DC conductivity. These values were computed using the Cole-Cole

model with parameters given by Bradford (2007) (for sands and clay), Friel and Or (1999)

(for silty loam) and Taherian et al. (1990) (for sandstone with brine). In general, the more

conductive the material the larger the difference between DC and effective conductivity.
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However, the larger the conductivity the less signal we have in the GPR data. Figure 1-d)

shows that for high conductivity the skin factor drops below 1m as materials increase in con-

ductivity. We note that for most earth materials, the DC and effective conductivity differs

by a factor of less than an order of magnitude. In Table 1 we complete our list of materials

with those in Loewer et al. (2017) (for humus, laterite and loess). We quantify how much

this factor is at 250MHz and find that most earth materials differ by a factor of less than 5.

Only dry sand (for this particular measured sample) exhibits a factor of 10, although the

DC and effective conductivity are still low with 0.45 and 4.5 mS/m respectively.

We recognize that frequency independent electrical parameters are generally not true in

nature. However, Figure 1 and Table 1 show that for a range of earth materials the frequency

dependence varies by a small factor (less than 5 in most cases) and that in cases where the

conductivity is large, the radar loses most of its signal due to attenuation. Assuming

frequency dependent parameters forms a starting point for the evaluation of the algorithm

and comprises a reasonable trade-off between computation cost, field applications, the full

use of the GPR waveform, and a lack of enforced assumptions of subsurface geometry and

petrophysical models.

Joining data from different types of geophysical imaging methods holds the promise of

reducing the non-linearity of characterizing subsurface material properties (Ogunbo et al.,

2018). Different approaches coupling the subsurface material properties as well as different

algorithmic workflows have been developed in order to join different types of sensitivities

(Moorkamp, 2017). Broadly, the material properties coupling can be done via geologic

structure (where different material properties are assumed to share the same geometry

(Haber and Oldenburg, 1997; Gallardo and Meju, 2003; Haber and Gazit, 2013)) or linked

by petrophysical relationships (Ghose and Slob, 2006). More specifically, Linde et al. (2006)
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use GPR and ER cross-hole data assuming structural similarities of electromagnetic prop-

erties and simplifying the physics of the GPR to only use travel times. Our approach

for joint inversion does not assume structural similarities and does not need petrophysical

relationships since the GPR and ER data are physically linked through conductivity with

Maxwell’s equations. We are able to increase the amplitude and spatial frequency resolution

of the inverted electrical properties in a joint inversion compared with individual inversions

of surface acquired data. In this way the GPR and ER optimization problems effectively

regularize each other while honoring the physics.

The layout of the paper is as follows. In the subsections GPR Inversion and ER

Inversion both the GPR and ER inversion schemes are developed separately and in Section

Joint Inversion the method for joining the different sensitivities is described. In Section

Examples we give results from our method with two different scenarios for underground

exploration of surface acquisition: (1) low conductivity and (2) high conductivity, and

present results with added noise in both the GPR and ER data.
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INVERSION METHODS

GPR inversion

The physics of the GPR experiment are given by the time dependent Maxwell’s equations,
µo 0 0
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(1)

where Ey is the electric field component in the y direction, (Hx, Hz) are the magnetic field

components in the x and z direction, Jy is the source term, ε is the relative electrical

permittivity (which we refer to only as permittivity), and σ is the electrical conductivity.

Both ε and σ are assumed constant in time and frequency independent. In order to keep

notation clean we will refer to operators and variables in capital and lower case letters

respectively, and so refer to the wavefield Ey as u. Table 2 gives a comprehensive list of

the notation symbols used in this paper. We use a finite-difference time-domain method

on a Yee grid (Yee, 1966) with PML boundary conditions (Berenger, 1996) to solve the

discretized time-domain (Domenzain et al., 2017) version of equation 1 which for reference

we write as,

u = Lw sw,

dsw = Mw u

(2)

where Lw is the discretized differential (time marching) operator of equation 1, u is the

electric field y component defined in space and time, sw is the source term, Mw is the
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measuring operator, and dsw = Mw u is the data of the experiment, i.e. a common-source

gather. The operator Mw formalizes the action of taking the data dsw (a two-dimensional

slice in time and receivers) from the three dimensional tensor u with dimensions of time,

length and depth. From now on ε and σ will denote the frequency independent electrical

permittivity and conductivity distributions in the xz plane and discretized as matricies of

size nz × nx where nx and nz denote the number of nodes in the xz-plane discretization.

We formulate our GPR inversion algorithm by finding parameters ε∗ and σ∗ that satisfy,

{ε∗,σ∗} = arg min
1

2
(Θw,ε(ε; dow) + Θw,σ(σ; dow)) , (3)

where the subscript ∗ denotes the imaged parameters and dow denotes all the observed GPR

data. We have,

Θw,ε =
1

ns

∑
s

Θs
w,ε, (4)

where s indexes the sources, ns denotes the total number of sources, and

Θs
w,ε =

||ew||22
||do,sw ||22

, (5)

where do,sw is the observed data for one source and ew = dsw − do,sw is the residual of the

modeled and observed data. A similar expression for Θw,σ follows with the only difference

between Θw,ε and Θw,σ being the order in the inversion scheme in which they are evaluated.

In order to find model updates ∆σw and ∆ε that minimize Θw we first obtain the

gradients gw,σ and gε of Θs
w,ε and Θs

w,σ respectively following Meles et al. (2010) using a
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full waveform inversion approach,

vw = Lw ew(−t), (6)

gw,σ = −
∑
t

u(−t)� vw(t) ·∆t, (7)

gε = −
∑
t

u̇(−t)� vw(t) ·∆t, (8)

where t denotes time, (−t) denotes time reversed, � denotes element-wise multiplication,

u̇ denotes the time derivative of u (computed with in a finite-difference way), vw is the

adjoint wavefield (the back-propagation of errors), and ∆t denotes the discretized time

interval. As noted by Kurzmann et al. (2013) using the adjoint method introduces high

amplitude artifacts near the receivers that dominate the gradients. In order to remove these

high amplitudes, we first multiply the gradients by a 2d gaussian surface in the xz-plane

centered at the source location. The bandwidth of the 2d gaussian equals a wavelength

where the wavelength is computed using the characteristic frequency of our survey and

the velocity at the source location. We then apply a gaussian lowpass space-frequency

filter following Taillandier et al. (2009) with the choice of bandwidth so as to only allow

wavelengths larger than or equal to the characteristic wavelength of the model. The updates

are,

∆σw = − 1

nw

nw∑
s=1

ασ gw,σ, (9)

∆ε = − 1

nw

nw∑
s=1

αε gε, (10)

where nw is the number of GPR common-shot gathers and ασ and αε are step-sizes for each

gradient.

Even with a true descent direction −gε, finding αε can be a very ill-posed inverse

problem by itself leading to negative step-sizes, overshoot of the solution ε∗ or a very slow

10



convergence. Overshooting the solution ε∗ can lead to our current values of ε to fall outside

the velocity interval determined by the stability conditions of our finite-difference wave

solver both in time (Courant et al., 1967) and space (e.g. numerical dispersion).

For these reasons we choose to compute the step-size αε with a three-point parabola

approximation of the objective function Θs
w,ε in the direction of its gradient (Wright and

Nocedal, 1999). Each point used in the parabola approximation is the image of a perturbed

permittivity ε̂i under the objective function Θs
w,ε,

ε̂i = ε� exp(−ε� piκε · gε), i = 1, 2, 3, (11)

where κε is a positive real number and pi is a fixed user defined percentage. At each

iteration and for each source, κε is chosen automatically in order to enforce the perturbed

permittivity to lie within a certain range of possible values, i.e. within the stability velocity

interval imposed by our wave solver (Courant et al., 1967) and we choose κε to be as large

as possible. We leave the details of finding κε in Appendix A. Because at a given iteration

we already have a value of Θs
w,ε for the current permittivity (i.e. with no perturbation), we

choose pi to be 0, 0.05 and 0.5. We proceed by computing Θs
w,ε(ε̂i; do,sw ) for i = 1, 2, 3 and

then fitting a parabola through these points from which we analytically compute where the

argument takes its minimum value: αε.

The computational cost of finding αε imposes one extra run of our forward model (equa-

tion 2) from what is done in Ernst et al. (2007b) and Meles et al. (2010), but proves to give

more accurate values for the descent direction. We note that our search for κε guarantees

the permittivity values always lie within the stability conditions of our wave solver: both

for the perturbations ε̂i and the updated ε.

Because GPR is only sensitive to conductivity through attenuation and weak reflections,
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in the case of strong attenuation the GPR data might not have enough information to

constrain a parabolic shape on Θs
w,σ in the vicinity of the current parameters. We find the

step-size ασ by first finding the largest possible real number κw,σ for which the perturbation

in the direction of −κw,σ gw,σ keeps the conductivity within a prescribed range of possible

values. We then take a small percentage (in the order of 1%) of this value to be ασ.

In late iterations we find that the updates in equation 9 can lead to an oscillatory

exploration of the solution space. To mitigate this effect we impose a momentum mε

(Rumelhart et al., 1986) to the descent direction ∆ε,

∆ε← ∆ε+mε ∆ε•, (12)

where ∆ε• is the update of the previous iteration. The value of mε is kept constant through-

out the inversion with a value of 25%.

At each iteration the updates are done in logarithmic scale in order to enforce the

physical positivity constraint on both ε and σ,

ε← ε� exp(ε�∆ε), (13)

σ ← σ � exp(σ �∆σw). (14)

As noted by Meles et al. (2010), if the conductivity and permittivity reflections vary sig-

nificantly it is not always convenient to compute the gradients and update under the same

forward run. In lieu of this observation, in each iteration we first compute equation 2, we

then compute ∆ε and update ε, we then compute our synthetic data (equation 2) again,

compute ∆σw and update σ. In total, for each iteration for one source we compute equation

2 four times and equation 6 two times, which in total accounts for six forward models.

Assuming the source wavelet is known for all sources in our GPR experiment, we give
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the algorithm for computing the updates ∆ε and ∆σw in Figure 2. The full GPR inversion

algorithm is given in Figure 4. The initialization of our algorithm consists in defining all

constants used in our inversion and inputing a good initial guess for both permittivity and

conductivity.

ER inversion

The physics of the ER experiment are given by the steady state Maxwell’s equations where

Ohm’s law holds (Pidlisecky et al., 2007),

−∇ · σ∇ϕ = i(δ(x− s+)− δ(x− s−)), (15)

where ϕ is the electric potential, i is the current intensity, s± is the source-sink position,

and σ is the electrical conductivity. Note that under our assumptions we are assuming that

conductivity in equation 15 is the same as in equation 1. We write the discretized version

of equation 15 as,

Ldcϕ = sdc,

dsdc = Mdcϕ,

(16)

where Ldc is the discretized differential operator of equation 15, ϕ is the electric potential

(a vector of size nxnz × 1), sdc is the source term (a vector of size nxnz × 1), Mdc is the

measuring operator that computes observed voltages (a matrix of size ndsdc × nxnz where

ndsdc denotes the number of measured voltages), and dsdc is the data of the experiment for

one source (a vector of size nddc × 1).

We follow Dey and Morrison (1979) and use a finite volume method to build the dis-

cretized operator Ldc, a sparse banded matrix of size nxnz × nxnz whose entries are a

function of σ and the boundary conditions. Neumann boundary conditions are applied on
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the air-ground interface, and Robin boundary conditions are applied in the subsurface (Dey

and Morrison, 1979). By specifying Robin boundary conditions on the air-ground interface

the matrix Ldc is directly invertible. The source vector sdc is sparse having only ±1 entries

at the source and sink positions.

In order to directly compare the sensitivities of both experiments, we use the same

discretized grid for both the GPR and the ER forward models. The spacings ∆x,∆z and

∆t are determined by the Courant-Friedrichs-Lewy condition (Courant et al., 1967) with

a user imposed interval of possible velocities in order for the GPR forward model to be

numerically stable.

We formulate our ER inversion algorithm by finding σ∗ that satisfies,

σ∗ = arg min Θdc(σ; dodc), (17)

where dodc is all of the ER data. We have,

Θdc =
1

ns

∑
s

Θs
dc, (18)

where s indexes the source, ns denotes the total number of sources, and

Θs
dc =

||edc||22
||do,sdc ||22

. (19)

We denote do,sdc the observed data for one source and edc = dsdc − do,sdc the residual of the

modeled and observed data. In order to find the model update ∆σdc that minimizes Θs
dc we

first find the gradient of Θs
dc with respect to σ. Let ∇σ be the vector of size 1×nxnz whose

entries are the partial dereivatives with respect to σ. We compute gdc using the adjoint

potential field vdc,

L>dc vdc = M>
dc edc,

gdc = Sdcvdc,

(20)
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where gdc and vdc are vectors of size nxnz × 1 and Sdc = −((∇σLdc)ϕ)> is a matrix of size

nxnz × nxnz. We leave the details of this derivation for Appendix B.

Similarly to gε and gw,σ, the gradient gdc exhibits strong amplitudes near the sources

and receivers. We use the approach of Taillandier et al. (2009) to filter out these artifacts

by applying a lowpass space-frequency domain gaussian filter with a choice of radius so as

to only allow wavelengths larger or equal than the smallest source-receiver spacing.

Once the gradients for all sources have been computed the update is,

∆σdc = − 1

ndc

ndc∑
s=1

αdc gdc, (21)

where ndc is the number of ER experiments, and αdc is a particular step size for each gdc.

The step-size computations are done following Pica et al. (1990), where a perturbation σ̂ of

σ in the direction of the gradient gdc is needed. We find the optimal perturbation parameter

κdc such that,

σ̂ = σ � exp(−σ � κdc gdc), (22)

using the same algorithm (but separately) as with the GPR inversion. Similarly to the GPR

permittivity sensitivity, we add a percentage in the order of 10% of the previous iteration

update to the current update ∆σdc to avoid an oscillatory search of the solution space

(Rumelhart et al., 1986),

∆σdc ← ∆σdc +mdc ∆σdc •, (23)

where ∆σdc • is the update from the previous iteration and mdc is kept constant throughout

the inversion. At each iteration the update is done in logarithmic scale in order to enforce

the physical positivity constraint on σ,

σ ← σ � exp(σ �∆σdc). (24)
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We give the algorithm for computing the update ∆σdc in Figure 3. The full ER inversion

algorithm is given in Figure 4. The initialization of our algorithm consists in defining all

constants used in our inversion and inputing a good initial guess for conductivity.

JOINT INVERSION

We formulate our GPR and ER joint inversion algorithm by finding parameters ε∗ and σ∗

that satisfy,

{ε∗,σ∗} = arg min
1

2
(Θw,ε(ε; dow) + Θw,σ(σ; dow)) + Θdc(σ; dodc). (25)

We optimize equation 25 by joining the updates ∆σw and ∆σdc obtained by equations 9

and 21 respectively. Since ∆σw and ∆σdc generally vary in magnitude, in order for the

updates to share their different spatial sensitivities, we first normalize them by their largest

amplitude and then add them together with scalar weights aw and adc,

∆σ = aw ∆σw + adc ∆σdc, (26)

then normalize ∆σ by its largest amplitude and finally write,

∆σ ← c∆σ, (27)

where c is the geometric mean of the maximum amplitudes of ∆σw and ∆σdc prior to

normalization. See Figure 5-a) for a summary of this procedure. The choices for weights

aw and adc are made with the paradigm of letting both updates ∆σw and ∆σdc always

contribute to ∆σ in proportion to their objective function value at a given iteration: if

the objective function value of one is smaller than the other, then the one with the smaller
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value should be more heavily weighted. The ad-hoc computation of aw and adc is,

aw =


1 if hΘw,σ ≤ Θdc

1√
|hΘw,σ−(Θdc−1)|

if Θdc < hΘw,σ,

adc =


1 if Θdc ≤ hΘw,σ

1√
|hΘw,σ−(Θdc+1)|

if hΘw,σ < Θdc,

(28)

where h is a positive number that further regulates the relative weight of GPR vs ER

sensitivities. The value of h modulates how much we weigh each sensitivity: an increasing

value of h decreases weighting of ∆σw, while a decreasing value of h increases the weighting

of ∆σw.

Moreover, the choice of h over each iteration manages two aspects of the inversion: (a)

at early iterations GPR data gives better sensitivity of sharp boundaries at shallow depths

compared to the ER data so ∆σw should be weighed more, however at later iterations

ER data gives better sensitivity overall so ∆σw should be weighed less. (b) We interpret

an increase of Θdc (or Θw,σ) with respect to the last iteration as a “cry for help” and so

∆σw should be weighed less (or more). Figure 6 shows the expected “bowtie” shape over

iterations of aw and adc that drives the physical sensitivities of our data in the parameter-

space search-path.

Because the geometries of the hyper-surfaces defined by Θw,σ and Θdc as a function

of σ are not known, we ensure the values of aw and adc comply with the bowtie shape

by enforcing emergent conditions (Cucker and Smale, 2007) that act individually on the

magnitude of h, but when used together they interact into forming the bowtie shape. The

conditions are (see Figure 5-b) for quick reference),
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(0) We first choose a value of adc for the first iteration to be positive and smaller than 1

and force the first choice of h to comply with this initial value of adc.

(1) As the iterations proceed, if adc is decreasing we increase h by a fixed ratio ȧdc,

h← ȧdc h.

Note that adc can only decrease if aw is 1.

(2) If aw decreases we further force the descent of aw increasing h by a fixed ratio ȧw,

h← ȧw h.

Note that the decrease of aw begins when adc reaches 1.

In order to ensure the “cries for help” are listened at each iteration we enforce,

(3) If the value of Θdc increases with respect to the last iteration we increase h by a fixed

ratio Θ̇dc,

h← Θ̇dc h.

(4) If the value of Θw,σ increases with respect to the last iteration we decrease h by a fixed

ratio Θ̇w,

h← Θ̇w h.

In summary, the weight h regulates the current iteration’s choice of confidence over the

sensitivities ∆σw and ∆σdc, while the weights ȧdc, ȧw, Θ̇dc and Θ̇w regulate how h changes

over each iteration. From conditions (1)-(4) we have,

ȧdc > 1 Θ̇dc > 1

ȧw > 1 Θ̇w < 1.

(29)
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Because each condition (1)-(4) is tested at each iteration, more than one condition can be

activated in the same iteration although not all combinations are possible, for example if

(1) is activated then (2) is not since adc descending implies aw is 1. Out of all the possible

combinations of repeated conditions of (1)-(4), only four are ambiguous in whether h

increases or decreases, see equation 30. We solve the ambiguities involving GPR and ER

terms by imposing an increase on h when they occur since this gives a higher weight on

∆σdc which is the update that is directly sensitive to the conductivity.

ȧdc Θ̇dc Θ̇w > 1

ȧdc Θ̇w > 1

ȧw Θ̇dc Θ̇w > 1

ȧw Θ̇w ≥ 1

(30)

In practice we treat h as an invisible variable and only worry about finding values for

ȧdc, ȧw, Θ̇dc and Θ̇w which remain constant throughout the inversion. These values are

found empirically. Table 3 holds the designated roles of values ȧdc, ȧw, Θ̇dc and Θ̇w. Table

4 holds the values used in our inversions for both low and high-conductivity scenarios.

The update for optimizing equation 25 is,

σ ← σ � exp(σ �∆σ). (31)

We summarize the procedure of computing the joint update ∆σ together with weight h in

Figure 5.
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EXAMPLES

Subsurface models

We illustrate our algorithm with two possible scenarios of the subsurface: one with low

conductivity (σ between 1 and 4mS/m) and one with high conductivity (σ between 5 and

20mS/m) as shown in Figure 8. The permittivity is kept equal (but assumed unknown) in

both scenarios. We place a box of size 1 × 1m present in both permittivity and conductivity,

and a reflector at depth with a 1m thickness present only in the permittivity. We invert for

both permittivity and conductivity starting from homogeneous background models: σ =

1mS/m and σ = 4mS/m for the low and high conductivity scenarios respectively and ε =

4 for both scenarios.

The choice for the size of the box in our models is intended to stress our inversions as

much as possible: large enough to have two wavelengths of the electromagnetic wave pass

through, but small enough to be just within the minimum resolution of our ER acquisition

sensitivity. We show the usefulness of the method on an exploration scenario relevant for

field applications and simple enough for interpretation and assessment of our method.

Data acquisition

The GPR data are synthetically generated by applying 20 equally spaced sources (with a

Ricker wavelet signature of 250MHz) on the air-ground interface with source-receiver spaced

a wavelength away (≈ 0.5m) and receiver-receiver distance a quarter of a wavelength away

all along the air-ground interface. The ER data are also synthetically generated using 17

electrodes placed on the air-ground interface with one meter spacing between them and

acquiring all possible dipole-dipole and Wenner array configurations.
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Noise

We add white noise to our synthetic GPR common-source gathers with amplitude 10% of

the standard deviation of each common-source gather (see Figure 9). We then lowpass the

data up to 70% of our Nyquist frequency, which is where most of the noise spectra is shared

with our noise-free data. Since the synthetic ER data do not follow a Gaussian distribution,

we first cluster the data and then add white noise to each cluster with an amplitude of 10%

of the standard deviation of each cluster (see Figure 10). We note that the noisy dipole-

dipole array gathers exhibit a significant lower signal-to-noise ratio than the noisy Wenner

array gathers, although we still use all of our noisy data for our inversions.

GPR inversions

In Figure 11-a) we see the recovered permittivity using just GPR data for the low conduc-

tivity scenario. We see the box correctly imaged and with values close to our true model

while the bottom reflector is rightly imaged but the parameter value is not accurate because

of amplitude loss in the data due to attenuation and two-way travel. We also observe low

spatial frequency artifacts as a result of our surface source illumination with amplitudes

dependent on the signal-to-noise ratio: with larger noise levels, the artifact amplitudes are

recovered with a value closer to the permittivity of the box anomaly. For the high conduc-

tivity scenario (Figure 12-a)) the amplitude loss in the GPR data is even greater yielding

speckle artifacts near the box of only 7.5% between the permittivity of the background and

the box.

The lack of amplitude information due to attenuation of the GPR data is also appreci-

ated in the recovered conductivities using only the GPR inversion as seen in Figure 13-a)
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for the low conductivity and even more so in Figure 14-a) for the high conductivity. We

note that because of the non-uniqueness between reflectivity caused by conductivity and

that caused by permittivity, the GPR conductivity solution detects an artifact apparent

boundary at the bottom of the model. High spatial frequency artifacts are also present in

the recovered low conductivity.

ER inversions

The ER recovered conductivities shown in Figures 13-b) and 14-b) for the low and high-

conductivity scenarios tell a different story from the GPR inversions: they have a more

accurate amplitude detection, contain more low spatial frequencies (both in the detection

of the box and the artifacts of the inversion), and because the ER data are directly and only

sensitive to conductivity they do not contain the bottom reflector. We note however that

because of our one-sided surface acquisition geometry and the inherent depth resolution of

ER, the amplitude of the box decays in depth.

Joint inversions

The joint inversion recovered conductivities for the low and high scenarios are shown in

Figures 13-c) and 14-c) respectively. We note improvements in the parameter accuracy and

spatial resolution of the recovered conductivities compared to the GPR and ER inversions

as well as a better depth resolution of the box. In Table 5 we quantify the improvement

of our joint inversion by dividing the zero-lag crosscorrelation of the true and recovered

conductivities with the zero-lag autocorrelation of the true conductivities. In both the low

and high-conductivity scenarios we see an improvement over the separate GPR and ER
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inversions. With respect to the GPR results, we improve by 3% and 5.4% in the low and

high-conductivity scenarios respectively. With respect to the ER results, we improve by

0.11% in both the low and high-conductivity scenarios.

Because of the non-uniqueness of conductivity and permittivity reflections in the GPR

data, our joint inversion has the caveat of detecting apparent boundaries in the conduc-

tivity solution. We also note artifacts in our joint inversion conductivities reminiscent of

the artifacts in the GPR recovered permittivity around the box-anomaly (Figure 11-a))

although because of our weighting scheme that penalizes ∆σw in later iterations, these

artifacts diminish amplitude as the number of iterations increase.

In the low conductivity scenario, Figure 15-a) shows that the GPR data dominates ∆σ

for the first 4 iterations resolving sharp boundaries at shallow depths that ∆σdc is not yet

sensitive to. However as iterations increase, ∆σw has contributed enough sensitivity for

∆σdc to resolve at depth and so the ER data dominates the inversion resolving the box and

smoothing GPR high spatial frequency artifacts while still letting ∆σw contribute to the

inversion. As shown in Figure 15-b) the first 20 iterations resolve the data at a faster pace

than in later iterations.

Similar to the low-conductivity scenario, the ER data dominates most of the inversion

as can be seen in Figure 16-a). Figure 16-b) shows a similar decrease of Θdc as in Figure

15-b) although Θw struggles to find a descent direction until the 40th iteration where both

Θw and Θdc take a final descending stretch.

Because of the lack of information about the subsurface in the GPR data due to strong

attenuation, the confidence of Θw in resolving the data is weak. The weak confidence of the

GPR data is also seen in the small curvature of Θw: the changes in Θw are small compared
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to the low conductivity scenario (Figure 15-b)), and the step sizes αε flip back and forth

between positive and negative values throughout the inversion (not shown). The lack of

curvature in Θw for the high conductivity scenario leads us to conclude that incorporating

ER sensitivity to ∆σw is not enough to resolve permittivity.

In order to increase the resolution of permittivity values in the case of high conductivity,

four possible solutions could be 1) using the low frequency information of the GPR in either

a stepped frequency approach as in Meles et al. (2012); 2) changing the objective function

in early iterations as in Bozdağ et al. (2011) or Ernst et al. (2007b) to allow for lower

frequency content to be imprinted in both ∆ε and ∆σw; 3) assuming the permittivity

and conductivity geometric features are similar and using a cross-gradient approach as in

Haber and Gazit (2013); Gallardo and Meju (2003) or 4) a joint update approach similar

to equation 26 where instead of joining the GPR and ER conductivity sensitivities we join

the permittivity (∆ε) and joint conductivity (∆σ) updates.

In Domenzain et al. (2019) we improve the resolution of our algorithm by incorporating

the envelope of the GPR data and using the cross-gradients constraint in a single objective

function.

CONCLUSIONS

We have developed a joint inversion algorithm for recovering subsurface frequency inde-

pendent electrical permittivity and conductivity with surface acquisition and no assumed

geometry or structure of the target media that enhances the sensitivity of the ground pene-

trating radar (GPR) and electrical resistivity (ER) data by introducing low and high spatial

frequency information while honoring the physics of Maxwell equations. Our joint inversion
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approach improves both the frequency independent permittivity and conductivity spatial

and amplitude resolution of the target media compared with just GPR or ER inversions.

Moreover, we find that GPR effectively supports ER in regions of low conductivity while

ER supports GPR in regions with strong attenuation.

We perform an iterative non-linear inversion where the GPR and ER sensitivities are

computed with the adjoint method and the conductivity GPR and ER sensitivities are joined

with an ad-hoc method with the paradigm of letting both sensitivities always contribute

to the inversion in proportion to how well their respective data are being resolved in each

iteration. Our weighting method makes use of five fixed user defined values that further

regulate the GPR and ER conductivity sensitivities automatically in each iteration, and

that rely on the physical resolution of the GPR and ER experiments. Because our ad-hoc

method to join the GPR and ER sensitivities is based on the value of the objective function

values and the physical resolution of our geophysical methods, we suggest it can be used

for joining other geophysical exploration methods where the physics involved play a similar

role, e.g. active source seismic and gravity which are linked by density.

We assume the subsurface media is linear, isotropic, two dimensional and with frequency

independent electrical parameters. In an effort to relax a-priori knowledge of the subsurface

we do not use any petrophysical relationships throughout our work. These assumptions

were chosen as a compromise between ease of computation cost and relevance with field

data scenarios. Moreover, we note that for a variety of earth materials the DC and effective

conductivity differ by a factor of less than an order of magnitude. Our assumptions enable

us to directly couple the electrical conductivity sensitivities that the GPR and ER data

are sensitive to. While frequency independent parameters are not true in general, it serves

as a starting point for testing our algorithm and motivates the development of forward
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models and inversion schemes that do take into account frequency dependency of electrical

parameters.

In order to benchmark our algorithm we simulate GPR and ER data on two subsurface

models, one with low (in the order of 10mS/m or less) and one with high (in the order of

more than 10mS/m) conductivity. The low conductivity model was designed to test our

algorithm in a case where the recovered permittivity is sufficiently resolved by the GPR

data alone while the conductivity is only meaningfully recovered by the ER data. The high

conductivity model was designed to test for a case where the GPR data alone cannot resolve

a meaningful image of either permittivity or conductivity. Sources and receivers were placed

on the air-ground interface simulating a real-data acquisition scenario for both GPR and

ER experiments.

In both cases our joint inversion approach improves the resolution of spatial dimensions

and amplitude of the target conductivity from just GPR and ER inversions. The spatial

detection is measured as a ratio of zero-lag cross-correlations between true and recovered

parameters. It is improved by 3% and 5.4% with respect to the GPR inversions in the low

and high-conductivity scenarios respectively, and by 0.11% in both scenarios with respect

to the ER inversions.

Because of the non-uniqueness between permittivity and conductivity reflections in the

GPR data, our joint inversion scheme introduces apparent boundaries in the recovered

conductivity that are not corrected with the ER data. High spatial frequency artifacts

of the GPR sensitivity to the conductivity are mapped into our joint inversion solution,

although these artifacts can be diminished in amplitude if the inversion is run for more

iterations allowing for the low spatial frequency ER sensitivity to correct them. In both
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low and high conductivity scenarios the recovered permittivity is not enhanced by using the

ER sensitivity to conductivity, which can be of particular interest in the high conductivity

case where permittivity is poorly solved by the GPR inversion.

Given the poor amplitude detection of the permittivity in the high conductivity scenario,

approaches to increase the permittivity solution should likely 1) exploit low frequency con-

tent of the GPR data and 2) assume structural similarities of permittivity and conductivity.

A possible path to enhance low frequency sensitivity of the GPR data could involve changing

the objective function of the GPR inversion in early iterations or sequentially increase the

frequency content of the GPR data during the inversion. If structural similarities between

permittivity and conductivity are assumed, possible paths to accomplish 2) could be joining

the conductivity sensitivities of the GPR and ER data in a cross-gradient scheme, or with

a similar approach as presented in this paper for joining the GPR and ER conductivity

sensitivities. In Part 2 we address 1) and 2) by enhancing our joint inversion with the

envelope transform of the GPR data and cross-gradient constraints on both permittivity

and conductivity.

Allowing for deeper spatial sensitivity for the ER experiment is equivalent to using long

one-sided surface acquisition. In order to recover low frequencies and enough amplitude

information from the GPR experiment, long one-sided surface acquisition of multi-offset

data are needed. Given that our joint update for the conductivity assumes both updates

are in the same spatial coordinates and with the same discretization, the cost for computing

the GPR and ER forward models is increased from conventional GPR or ER experiments

and inversion schemes. As a result, long offsets for both experiments are needed, yielding

our approach best suited for shallow subsurface investigation.
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Inverting for subsurface electrical properties using full-waveform of GPR data with data

acquired on the surface is a new and emerging method. Choosing to carefully study synthetic

examples where the solution is known enables us to assess the attributes and limitations of

our method. This is an important step before using field data with our method because, in

general, the solution of subsurface electrical parameters is unknown.

APPENDIX A

OPTIMALLY PERTURBING

Given a descent direction, finding the right step size is equivalent to traversing the objective

function hyper-surface in the direction of the gradient (−agε) starting from our current

value of ε and finding the value a = αε which minimizes the objective function (Wright and

Nocedal, 1999). Traversing the objective function hyper-surface is done by perturbing the

current value for ε with a collection of real numbers ai. In equation 11 we used the notation

ai = piκε and gave empirical values for pi. In this section we find κε.

To speed-up convergence but maintain stability we perform a descending search for κε.

We start with a large value of κε and compute the perturbation ε̂,

ε̂ = ε� exp(−ε� κε gε). (A-1)

We then check if the minimum and maximum value of ε̂ lie within our stability velocity

region: if they do we have found κε, if they do not we decrease κε until they do. In practice

once we have found a value of κε that lies within our stability region, we repeat the search

with finer ascending values of κε to make sure ε̂ is as snug as possible in our velocity

interval.
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APPENDIX B

ER GRADIENT

Taking the derivative with respect to σ and using the chain rule on the ER objective

function for one source location,

Θs
dc(σ; sdc,d

o,s
dc ) =

||dsdc − do,sdc ||
2
2

||do,sdc ||22
, (B-1)

we have,

∇σΘs
dc = ∇ddcΘ

s
dc · ∇σdsdc, (B-2)

where ∇σΘs
dc and ∇dsdc

Θs
dc are vectors of size 1 × nxnz and 1 × ndsdc respectively (where

ndsdc is the number of entries in the data) and ∇σddc is the Jacobian Jdc of ddc, a matrix

of size ndsdc × nxnz. Because of our choice of Θs
dc to be the sum of square errors, ∇dsdc

Θs
dc

is equal to e>dc. We make the convention of calling gdc the vertical vector whose entries are

the partial derivatives of Θs
dc with respect to σ, i.e. gdc = (∇σΘs

dc)
>. We now take the

transpose of equation B-2,

gdc = J>dc edc. (B-3)

Our task will be to find a different expression for the right-hand side of equation B-3,(Domenzain

et al., 2017; Pratt et al., 1998).

Using the product rule on equation 16, we have

Ldc∇σϕ+ (∇σLdc)ϕ = 0. (B-4)

We now transpose equation B-4,

(∇σϕ)>L>dc = Sdc, (B-5)
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where Sdc = −((∇σLdc)ϕ)> is a matrix of size nxnz × nxnz whose entries are explicitly

calculated as a function of σ, the spacial discretization and ϕ. We define the adjoint field

vdc to satisfy,

L>dc vdc = M>
dc edc, (B-6)

and multiply equation B-5 on the right side by vdc,

(∇σϕ)> L>dcvdc = Sdc vdc,

(∇σϕ)>M>
dcedc = Sdc vdc,

(∇σdsdc)> edc = Sdc vdc,

J>dc edc = Sdc vdc,

(B-7)

where in the second to last equality we have used ∇σdsdc = Mdc∇σϕ. Finally we write,

gdc = Sdc vdc. (B-8)

We note that this approach is similar to Pidlisecky et al. (2007), although we have explicitly

written an expression for Ldc and Sdc entry by entry rather than as a multiplication of

discretized differential operators, which yields full rank on Ldc and Sdc because of the used

boundary conditions.
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murtèl, swiss alps: Near Surface Geophysics, 10, 117–127.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986, Learning representations by

back-propagating errors: nature, 323, 533.

Scapozza, C., C. Lambiel, L. Baron, L. Marescot, and E. Reynard, 2011, Internal struc-

ture and permafrost distribution in two alpine periglacial talus slopes, valais, swiss alps:

Geomorphology, 132, 208–221.

Schmid, L., A. Heilig, C. Mitterer, J. Schweizer, H. Maurer, R. Okorn, and O. Eisen,

2014, Continuous snowpack monitoring using upward-looking ground-penetrating radar

technology: Journal of Glaciology, 60, 509–525.

Sold, L., M. Huss, M. Hoelzle, H. Andereggen, P. C. Joerg, and M. Zemp, 2013, Method-

ological approaches to infer end-of-winter snow distribution on alpine glaciers: Journal

of Glaciology, 59, 1047–1059.

Spichak, V. V., and O. K. Zakharova, 2015, Electromagnetic geothermometry: Elsevier.

Spitzer, K., 1998, The three-dimensional dc sensitivity for surface and subsurface sources:

Geophysical Journal International, 134, 736–746.

Taherian, M., W. Kenyon, and K. Safinya, 1990, Measurement of dielectric response of

water-saturated rocks: Geophysics, 55, 1530–1541.

Taillandier, C., M. Noble, H. Chauris, and H. Calandra, 2009, First-arrival traveltime to-

mography based on the adjoint-state method: Geophysics, 74, WCB1–WCB10.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation:

37



Geophysics, 49, 1259–1266.

Wright, S., and J. Nocedal, 1999, Numerical optimization: Springer Science, 35, 7.

Xue, Z., J. Sun, S. Fomel, and T. Zhu, 2017, Accelerating full-waveform inversion with

attenuation compensation: Geophysics, 83, A13–A20.

Yee, K., 1966, Numerical solution of initial boundary value problems involving maxwell’s

equations in isotropic media: IEEE Transactions on antennas and propagation, 14, 302–

307.

Zhu, T., and J. M. Harris, 2014, Modeling acoustic wave propagation in heterogeneous

attenuating media using decoupled fractional laplacians: Geophysics, 79, T105–T116.

38



LIST OF TABLES

1 Frequency dependent and DC conductivities at 250MHz given by the Cole-Cole

model. Most earth materials present an increase of at most 5 between DC and (real) effec-

tive conductivity.

2 Reference for the notation used in the discretized inverse problems. Symbols com-

mon in both GPR and ER experiments are stripped from their subscripts to avoid clutter.

3 Parameters for our joint inversions that were found empirically and remained fixed

throughout the inversions. An increase in h favors ∆σdc more than ∆σw. Conversely, a

decrease in h favors ∆σw more than ∆σdc.

4 Inversion parameters used for the low and high-conductivity scenario.

5 Ratio of maximum zero-lag cross-correlation between recovered and observed pa-

rameters for the low and high-conductivity scenarios. Closer to 1 is better. The joint

inversion outperforms the GPR and ER recovered conductivities.

39



LIST OF FIGURES

1 Frequency dependent conductivity and attenuation coefficients of various earth

materials. Solid and dashed lines represent (real) effective and DC conductivity respectively.

In a) and b) are low conductivity materials where GPR data has a large signal-to-noise

ratio. In c) and d) are high conductivity materials where GPR data has a low signal-to-

noise ratio.

2 Algorithms for computing the updates ∆ε and ∆σw.

3 Algorithm for computing the update ∆σdc.

4 Inversion algorithms for a) GPR and b) ER.

5 Algorithm for computing the update ∆σ as explained in Section Joint Inversion.

6 Diagram of weights aw and adc as a function of iterations. An initial value for adc is

chosen following condition (0). If adc decreases over iterations, or Θdc increases, condition

(1), or (3), are activated to increase adc. Once adc reaches the value 1, aw is forced to

steadily decrease with condition (2). If Θw,σ increases over iterations, condition (4) is

activated and aw is increased but regulated by condition (2).

7 Joint inversion algorithm as explained in Section Joint Inversion.

8 Subsurface models used for our inversions. The size of the box is 1×1m. a) The

permittivity background, bottom reflector and box have values of 4, 9 and 6 respectively.

The conductivity background and box have values of 1 and 4 mS/m for the low conductivity

b) and 4 and 20 mS/m for the high conductivity c) respectively. An example of GPR

receivers and source are depicted in green and red in b) and ER electrodes are depicted in

green in c).

9 GPR data for one source noise free and with added noise.

10 a) All ER data noise free and the clusters used for adding noise depicted with

40



symbols +, •, and ×. b) Pseudo-section of a dipole-dipole survey noise free and c) with

added noise.

11 Recovered permittivity for the low-conductivity scenario with just GPR data a)

and with GPR and ER data b).

12 Recovered permittivity for the high-conductivity scenario with just GPR data a)

and with GPR and ER data b).

13 Recovered low conductivity using a) just GPR data, b) just ER data, and c) both

GPR and ER data. Each inversion was run for 50 iterations.

14 Recovered high conductivity using a) just GPR data, b) just ER data, and c) both

GPR and ER data. Each inversion was run for 50 iterations.

15 Update weights history over iterations for the low-conductivity scenarios a) and

normalized objective functions history over iterations d).

16 Update weights history over iterations for the high-conductivity scenarios a) and

normalized objective functions history over iterations d).

41



Figure 1: Frequency dependent conductivity and attenuation coefficients of various earth

materials. Solid and dashed lines represent (real) effective and DC conductivity respectively.

In a) and b) are low conductivity materials where GPR data has a large signal-to-noise

ratio. In c) and d) are high conductivity materials where GPR data has a low signal-to-

noise ratio.
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Effective (mS/m) DC (mS/m) Effective/DC

Dry sand 4.54 0.45 10.1

Moist sand 6.53 2 3.26

Wet sand 8.06 6.06 1.33

Silty loam 17.3 3.5 4.93

Sandstone with brine 27.2 16.2 1.68

Humus 43.1 19.5 2.21

Laterite 45 9 5

Wet clay 68.4 42.5 1.61

Loess 185 72.3 2.55

Table 1: Frequency dependent and DC conductivities at 250MHz given by the Cole-Cole

model. Most earth materials present an increase of at most 5 between DC and (real) effective

conductivity.
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Figure 2: Algorithms for computing the updates ∆ε and ∆σw.
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Figure 3: Algorithm for computing the update ∆σdc.
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Figure 4: Inversion algorithms for a) GPR and b) ER.
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Symbol Meaning Note

ε Discretized electrical relative permittivity

σ Discretized electrical conductivity

L Discretized differential operator

s Discretized source

M Discretized measuring operator

d Synthetic data

e Residual of synthetic vs observed data Used for

Θ Objective function GPR and ER

v Discretized adjoint field

g Gradient of objective function

α Step size for g

κ Perturbation parameter used to find α

m Momentum parameter

u Electric wavefield on the y component

u̇ Finite-difference time derivative of u

ε̂ Perturbed permittivity Only

∆σw GPR conductivity update GPR

∆ε GPR permittivity update

∆ε• GPR permittivity update from the previous iteration

ϕ Discretized electric potential

Sdc The matrix −((∇σLdc)ϕ)>

σ̂ Perturbed conductivity Only

∆σdc ER conductivity update ER

∆σdc • ER Conductivity update from previous iteration

∆σ Joint conductivity update

aw Weight to regulate ∆σw Used for

adc Weight to regulate ∆σdc the joint

h Weight to regulate aw and adc update

c Step size for ∆σ

Table 2: Reference for the notation used in the discretized inverse problems. Symbols

common in both GPR and ER experiments are stripped from their subscripts to avoid

clutter.
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Figure 5: Algorithm for computing the update ∆σ as explained in Section Joint Inversion.
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Figure 6: Diagram of weights aw and adc as a function of iterations. An initial value for

adc is chosen following condition (0). If adc decreases over iterations, or Θdc increases,

condition (1), or (3), are activated to increase adc. Once adc reaches the value 1, aw is

forced to steadily decrease with condition (2). If Θw,σ increases over iterations, condition

(4) is activated and aw is increased but regulated by condition (2).
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Figure 7: Joint inversion algorithm as explained in Section Joint Inversion.
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Parameter Role Turn-on

initial adc Initial weight on ∆σdc Only in first iteration

ȧdc Increase h and adc Only when aw = 1

ȧw Increase h, decrease aw Only when adc = 1

Θ̇dc Increase h, weigh ∆σdc more Always

Θ̇w Decrease h, weigh ∆σw more Always

Table 3: Parameters for our joint inversions that were found empirically and remained fixed

throughout the inversions. An increase in h favors ∆σdc more than ∆σw. Conversely, a

decrease in h favors ∆σw more than ∆σdc.
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Parameter Low σ High σ

initial adc 0.85 0.9

ȧdc 4 2

ȧw 2 1.5

Θ̇dc 6 20

Θ̇w 0.9 0.9

Table 4: Inversion parameters used for the low and high-conductivity scenario.
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Figure 8: Subsurface models used for our inversions. The size of the box is 1×1m. a) The

permittivity background, bottom reflector and box have values of 4, 9 and 6 respectively.

The conductivity background and box have values of 1 and 4 mS/m for the low conductivity

b) and 4 and 20 mS/m for the high conductivity c) respectively. An example of GPR

receivers and source are depicted in green and red in b) and ER electrodes are depicted in

green in c).
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Figure 9: GPR data for one source noise free and with added noise.
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Figure 10: a) All ER data noise free and the clusters used for adding noise depicted with

symbols +, •, and ×. b) Pseudo-section of a dipole-dipole survey noise free and c) with

added noise.
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Figure 11: Recovered permittivity for the low-conductivity scenario with just GPR data a)

and with GPR and ER data b).
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Figure 12: Recovered permittivity for the high-conductivity scenario with just GPR data

a) and with GPR and ER data b).
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Figure 13: Recovered low conductivity using a) just GPR data, b) just ER data, and c)

both GPR and ER data. Each inversion was run for 50 iterations.
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Figure 14: Recovered high conductivity using a) just GPR data, b) just ER data, and c)

both GPR and ER data. Each inversion was run for 50 iterations.
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Inversion low σ high σ

GPR 0.8685 0.8432

ER 0.8964 0.8963

Joint 0.8975 0.8974

Table 5: Ratio of maximum zero-lag cross-correlation between recovered and observed pa-

rameters for the low and high-conductivity scenarios. Closer to 1 is better. The joint

inversion outperforms the GPR and ER recovered conductivities.
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Figure 15: Update weights history over iterations for the low-conductivity scenarios a) and

normalized objective functions history over iterations d).
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Figure 16: Update weights history over iterations for the high-conductivity scenarios a)

and normalized objective functions history over iterations d).
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