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Abstract. This paper is concerned with estimating the solutions of numerically ill-posed least squares problems
through Tikhonov regularization. Given a priori estimates on the covariance structure of errors in the measurement
data b, and a suitable statistically-chosen σ, the Tikhonov regularized least squares functional J(σ) = ‖Ax −
b‖2Wb

+ 1/σ2‖D(x − x0)‖22, evaluated at its minimizer x(σ), approximately follows a χ2 distribution with m̃
degrees of freedom. Here m̃ = m + p − n for A ∈ Rm×n, D ∈ Rp×n, matrix Wb is the inverse covariance
matrix of the mean 0 normally distributed measurement errors e in b, and x0 is an estimate of the mean value of
x. Using the generalized singular value decomposition of the matrix pair [W

1/2
b

AD], σ can then be found such
that the resulting J follows this χ2 distribution, Mead and Renaut (2008). Because the algorithm explicitly relies on
the direct solution of the problem obtained using the generalized singular value decomposition it is not practical for
large scale problems. Here the approach is extended for large scale problems through the use of the Newton iteration
in combination with a Golub-Kahan iterative bidiagonalization of the regularized problem. The algorithm is also
extended for cases in which x0 is not available, but instead a set of measurement data provides an estimate of the
mean value of b. The sensitivity of the Newton algorithm to the number of steps used in the Golub-Kahan iterative
bidiagonalization, and the relation between the size of the projected subproblem and σ are discussed. Experiments
presented contrast the efficiency and robustness with other standard methods for finding the regularization parameter
for a set of test problems and for the restoration of a relatively large real seismic signal. An application for image
deblurring also validates the approach for large scale problems. We conclude that the presented approach is robust
for both small and large scale discretely ill-posed least squares problems.
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1. Introduction. We are concerned with the solution of large-scale linear discrete ill-

posed problems such as arise in many physical experiments associated, for example, with the

discretization of integral equations [27, 9], and modeled by the ill-posed system of equations

Ax = b. Matrix A ∈ Rm×n results from the underlying model discretization and a solution

x ∈ Rn is desired for measurements b ∈ Rm, which are often noise-contaminated. An

approximate solution x̂ may be obtained by solving the weighted regularized least squares

problem, with matrix D ∈ Rp×n, p ≤ n, chosen dependent on anticipated smoothness

properties of the solution x,

x̂ = argmin J(x) = argmin{‖Ax− b‖2Wb
+ ‖D(x− x0)‖2Wx

}.(1.1)
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Notice that we consider the general case in which the fit to data term is measured in a weighted

norm with weight matrix Wb which may be available experimentally. For example, when

the measurement errors e in the measurement data b are assumed to be samples from a

multivariate normal distribution, Nm(0, Cb) (m variables, mean 0 and covariance Cb), the

weighting is the inverse covarianceWb = C−1
b . For the case of colored noise Cb is diagonal,

Cb = diag(σ2
1 , σ

2
2 , . . . , σ

2
m), whereas for white noise Cb = σ2Im.

As presented here the regularization term D(x − x0) is also calculated in a weighted

norm. If Wx can be assumed to be the inverse covariance matrix for normally distributed

errors in the mapped model parameters Dx, then it can be shown that the minimum of the

functional J follows a χ2 distribution with m − n + p degrees of freedom, [16, 17]. This

extends the standard result on the χ2 distribution of the unregularized least squares functional

[23]. Also, if D = In and Wx = 1/σ2
xIn, where σ2

x is the common white noise variance

in model parameters x, then x̂ is the standard maximum a posteriori (MAP) estimate of the

solution, [27]. The advantage of assuming that weighting matrices Wb and Wx are inverse

covariance matrices is that it permits our focus on the use of the χ2 property of the minimum

functional to efficiently determine the parameter σx when Wx = 1/σ2
xIn.

The determination of the optimal λ = 1/σx is a topic of much previous research, and in-

cludes methods, amongst others, such as the L-curve, generalized cross validation (GCV), the

unbiased predictive risk estimate (UPRE) and the discrepancy principle estimate of the dis-

tance between the exact and regularized solution [19], all of which are well-described in the

literature, see e.g. [9, 27] for comparisons of the criteria and more references. Other recent

approaches analyse the statistical properties of the residual of the least squares functional

[24, 10]. Some especially promising efforts for determining λ, particularly for large scale

problems, have placed emphasis on regularization methods based on iterative Golub-Kahan

bidiagonalization, e.g., LSQR [21, 22] and hybrid methods [4, 9, 12, 13, 2, 20]. In hybrid

methods the original problem is projected onto a lower dimensional subspace using the bidi-

agonalization algorithm, which by itself represents a form of regularization by projection.

The projected bidiagonal problem, however, inherits a part of the ill-posedness, and therefore

some form of inner regularization is applied to the projected small sub-problem. The bidiag-

onalization may be stopped when the regularized solution of the projected problem matches

any of the previously mentioned stopping criteria. Hybrid methods seek to combine the bidi-

agonalization procedure with determination of an appropriate regularization parameter for

solving the projected system. The hybrid method presented in this paper utilizes efficient
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iterative bidiagonalization combined with a parameter search algorithm obtained from the χ2

property of the regularized functional.

Incorporating the χ2 property of the functional J to find λ is a recent innovation. Pro-

vided that the weighting matrix Wx is the appropriate inverse covariance matrix for the reg-

ularization term and that the prior information x0 approximates the mean of parameters x,

the χ2 property implies that J lies within an interval centered around its expected value,

[17]. Therefore a Newton root-finding algorithm can be designed for determining σx. This

algorithm may be implemented for small-scale problems using a direct solve employing the

generalized singular value decomposition (GSVD) of the matrix pair [W 1/2
b A|D], [17]. Here

the GSVD direct solve is replaced by the iterative bidiagonalization for the regularized prob-

lem. This algorithm has the benefit of reuse of the bidiagonal system for each step of the

Newton iteration, namely for each value of σ = 1/λ found in the Newton algorithm, and

hence solves the regularized problem for optimal λ at almost no overhead as compared to a

single solve for one given λ. Note that a general operator D, D 6= I , can also be considered,

using the conversion to standard form regularization [9, 3]. Another possibility would be to

use an algorithm for simultaneous bidiagonalization of A and D as presented in [13].

First, in Section 2 we present extensions of the theory, relevant for solving more general

problems. For example, when x0 is not the expected value of the model data we show that the

minimum functional follows a non-central χ2 distribution, with centrality parameter related

to the choice of x0 in relation to the actual mean x. Moreover, the use of a truncated (filtered)

expansion of the GSVD for providing a filtered direct GSVD solution also modifies the theory,

yielding a functional which has fewer degrees of freedom, dependent on the number of terms

used in the filtered expansion. The original GSVD-based implementation of the Newton al-

gorithm can be extended for both cases and implementation details are provided in Section 3.

For large scale problems the same Newton algorithm is employed but solutions are obtained

iteratively using the hybrid algorithm described in Section 3.2. Numerical experiments de-

tailed in Section 4 contrast the performance of the iterative and direct solve algorithms for

small-scale problems, for both central and non-central distributions of the underlying func-

tional. These experiments validate both the algorithm for non-central functionals and for the

large scale implementation. The dependence of the regularization parameter obtained in re-

lation to the size of the projected problem is also discussed, Section 4.3. As the subproblem

size increases, the solution admits higher frequency components and more regularization is

needed. Finally, in Sections 4.4-4.5 the hybrid algorithm is shown to yield efficient and robust
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results for the deblurring of a relatively large real seismic signal, and the deblurring of a large

scale image for which the true image is available. Future work and conclusions are discussed

in Section 5.

2. Theoretical Development.

2.1. χ2 Distribution of the Regularized Functional. The solution of (1.1) with Wx =

λ2In, assuming invertibility

N (A) ∩N (D) = ∅,(2.1)

is given by

x̂(λ) = (ATWbA+ λ2DTD)−1ATWbr + x0 = x(λ) + x0,(2.2)

where the residual r is given by r = b − Ax0. This is more compactly written using the

resolution matrix R(λ) = (ATWbA+ λ2DTD)−1ATW
1/2
b , or, more generally, R(WD) =

(ATWbA+WD)−1ATW
1/2
b , whereWD = DTWxD, yielding x̂(WD) = R(WD)W 1/2

b r+

x0. With this notation, and introducing the influence matrixA(WD) = W
1/2
b AR(WD), (1.1)

is written as a quadratic form,

J(x̂(WD)) = rTW 1/2
b (Im −A(WD))W 1/2

b r.(2.3)

To obtain the result on the χ2 distribution of this functional we employ the GSVD, using the

notation as given in [17], to reexpress this quadratic form.

LEMMA 2.1. [5] Assume the invertibility condition (2.1) and m ≥ n ≥ p. There exist

unitary matrices U ∈ Rm×m, V ∈ Rp×p, and a nonsingular matrix X ∈ Rn×n such that

A = UΥ̃XT , D = V M̃XT ,(2.4)

where

Υ̃ =

 Υ 0
0 In−p
0 0

 , Υ = diag(υ1, . . . , υp) ∈ Rp×p,

M̃ =
[
M, 0p×(n−p)

]
, M = diag(µ1, . . . , µp) ∈ Rp×p,

and such that

0 ≤ υ1 ≤ . . . ≤ υp ≤ 1, 1 ≥ µ1 ≥ . . . ≥ µp > 0,
υ2
i + µ2

i = 1, i = 1, . . . p.(2.5)
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Now, using the GSVD of the matrix pair [W 1/2
b A|W 1/2

D ],

J(x̂(WD)) = rTW 1/2
b U(Im − Υ̃Υ̃T )UTW 1/2

b r(2.6)

=
p∑
i=1

s2iµ
2
i +

m∑
i=n+1

s2i , s = UTW
1/2
b r(2.7)

= ‖k‖2 −
n∑

i=p+1

k2
i , k = QUTW

1/2
b r(2.8)

Q = diag(µ1, . . . , µp, In−p, Im−n).(2.9)

This is the starting point for showing that J follows a central χ2 distribution with m+n− p

degrees of freedom as detailed in Theorem 3.1 [17], provided that x0 is the expected value,

denoted by x, of x. Typically, x is unknown and x0 = 0 is chosen. For x0 6= x the following

non-central generalization is obtained.

THEOREM 2.2 (Non Central χ2 distribution of the Regularized Functional).

Suppose

• Cb = W−1
b is the symmetric positive definite (SPD) covariance matrix on the mean

zero normally-distributed data error, ei,

• CD is the, possibly rank deficient, symmetric positive (semi-)definite covariance

matrix for the mean zero normally distributed model errors ζi = (D(x̂(WD)i −

x0))i, with the conditional SPD inverse WD which satisfies the two Moore-Penrose

conditions WDCDWD = WD and CDWDCD = CD,

• that the invertibility condition (2.1) holds, and

• that the expected value of x is x.

Then in the limit m − n + p sufficiently large, the minimum value of the functional J is a

random variable which follows a non-central χ2 distribution with m − n + p degrees of

freedom, and non-centrality parameter c = ‖c̃‖22 = ‖Q̃UTW 1/2
b A(x− x0)‖22, where

Q̃ = diag(µ1, . . . , µp, 0n−p, Im−n).(2.10)

Equivalently, J ∼ χ2(m− n+ p, c) has expected value m− n+ p+ c and variance 2(m−

n+ p) + 4c.

Proof. We use the Fisher-Cochran theorem for quadratic forms [23], to show that in

the limit as the number of terms increases (2.6) follows a χ2 distribution. Because (2.8)

expresses the quadratic form in terms of the two norm of the vector k, excepting the com-

ponents p + 1 : n, it is sufficient to consider the distributions of the relevant components

ki of k. The argument follow as in [17] but the statistical argument is modified when x0 is
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not the mean. In particular, because the data and model errors are mean zero and normally

distributed, the expected value of the random variable b is b = Ax, so that r = A(x− x0),

and k has mean c = QUTW
1/2
b A(x − x0). Thus b ∼ Nm(Ax1, Cb + ACDA

T ) and

W
1/2
b r ∼ Nm(W 1/2

b A(x − x0), Im + W
1/2
b ACDA

TW
1/2
b ). But, using the GSVD, CD =

(XT )−1diag(M−2, 0n−p)X−1, and Im + ÃCDÃ
T = UQ−2UT . Therefore,

k ∼ Nm(QUTW 1/2
b A(x− x0), Im).(2.11)

Now, by (2.8), the centrality parameter is calculated excluding the component means of vector

k for components p+ 1 : n and the result follows, [23].

REMARK 1. Theoretically, for b ∈ range(A), r ∈ range(A) and the last n + 1 : m

components of s = UTW
1/2
b r are identically zero. This would imply that J has p degrees of

freedom instead of m− n+ p. Practically, b is error contaminated and
∑m
i=n+1 s

2
i in (2.7)

is positive and constant with respect to σ. On the other hand, given precise values for x and

x0, the last m− n components of c = Qq = QUTW
1/2
b A(x− x0) = QΥ̃XT (x− x0) are

identically zero.

Theorem 2.2 suggests that an approach for finding a suitable regularization parameter in

the single variable case Wx = λ2In, given sufficient statistical information on the measured

data b, is to find a λ = 1/σx so that as closely as possible J follows a χ2 distribution,

J(σx) ∼ χ2(m− n+ p, c(σx)). Equivalently, introducing the notation m̃ = m− n+ p, and

δ(σx) = zα/2
√

2m̃+ 4c(σx), we want to determine σx such that

m̃+ c(σx)− δ(σx) ≤ J ≤ m̃+ c(σx) + δ(σx),(2.12)

where zα/2 is the relevant z-value for a standard normal distribution, and α defines the (1−α)

confidence interval that J ∼ χ2(m−n+p, c). Taking c = 0 this is equivalent to the condition

used in [17] for the case when x0 ≈ x. Here, because c depends on σ, the design of an

algorithm to find σx satisfying (2.12) becomes more challenging. The algorithm design is

discussed in Section 3, but first we address a modification of the result when the numerical

rank is reduced.

2.2. The Truncated GSVD. We are also interested in the case when the numerical

rank of the resolution matrix is reduced, in which case the number of degrees of freedom of

the random variable J is also reduced. We illustrate this observation through the use of a

truncated GSVD expansion for the solution (2.2).
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Suppose that the regularized solution x̂(λ) is written in terms of the GSVD expansion.

x(λ) =
p∑
i=1

υi
υ2
i + λ2µ2

i

six̃i +
n∑

i=p+1

six̃i,(2.13)

=
p∑
i=1

γ2
i

υi(γ2
i + λ2)

six̃i +
n∑

i=p+1

six̃i,

=
p∑
i=1

fi
υi
six̃i +

n∑
i=p+1

six̃i, fi =
γ2
i

γ2
i + λ2

,

using the notation fi given in [7] and where x̃i, i = 1 . . . n are the columns of matrix (XT )−1.

It is well known, however, that the stable numerical calculation of the GSVD relies on ‖D‖ ≈

‖Ã‖, [9, 7]. If Cb is not well conditioned, this property carries through to Ã, ill-conditioning

will be reflected in υi and x̃i for small i, and the full expansion in (2.13) will lead to a

solution that is noise-contaminated. Thus, as with the use of the truncated singular value

decomposition for ill-conditioned problems, a truncated GSVD expansion, [7], of the solution

has previously been suggested. Setting fi = 0 for small components υi, i ≤ p − r and 1

otherwise, yields a truncated expansion solution

xTGSVD =
p∑

i=p+1−r

1
υi
six̃i +

n∑
i=p+1

six̃i.(2.14)

More generally, we may consider the filtered solution, following the suggestion in [14] for

the regularized TSVD, in which the filter function is defined by fi = 0 for υi < τ for

some tolerance τ , but for the other terms we maintain the dependence on the regularization

parameter λ

xFILT(λ) =
p∑

i=p+1−r

γ2
i

υi(γ2
i + λ2)

six̃i +
n∑

i=p+1

six̃i =
p∑
i=1

fi
υi
six̃i +

n∑
i=p+1

six̃i.(2.15)

This amounts to setting υi = 0, µi = 1, so that γi = 0, i ≤ p− r. Consequently, we obtain a

new expression for the quadratic form (2.7)

J(xFILT(λ)) =
p−r∑
i=1

s2i +
m∑

i=n+1

s2i +
p∑

i=p−r+1

λ2

γ2
i

fis
2
i .(2.16)

Theorem 2.2 is modified appropriately and the distribution applies not for the original J(λ))

but for a new functional J̃(λ)) with the constant terms in (2.16) removed

J̃(λ) = J(λ)−
p−r∑
i=1

s2i .(2.17)
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THEOREM 2.3. Under the same conditions as Theorem 2.2, but with the solution given

by (2.15), such that fi = 0, i = 1 : p − r, fi = γ2
i /(γ

2
i + λ2), i = p − r + 1 : p, then

the function J̃ is a χ2 random variable with m − n + r degrees of freedom, and centrality

parameter

c = ‖c̃‖22 = ‖Q̃UTW 1/2
b A(x− x0)‖22,(2.18)

where, generalizing (2.10),

Q̃ = diag(0p−r, µp−r+1, . . . , µp, 0n−p, Im−n).(2.19)

Proof. The proof proceeds as before for Theorem 2.2 but replacing k in (2.8) with k̃ =

Q̃UTW
1/2
b r with the new definition (2.19) for Q̃. The distribution for W 1/2

b r is unchanged,

but

k̃ ∼ Nm(Q̃UTW 1/2
b A(x− x0),diag(0p−r, Im−(p−r))).

Whereas the mean and variance of the components of k̃i are unchanged from those for ki for

i > p− r, the first p− r components of k̃ are constant, mean and variance 0. Therefore

J̃ = J −
p−r∑
i=1

s2i(2.20)

=
p∑

i=p−r+1

k̃2
i +

m∑
i=n+1

k̃2
i ,(2.21)

is a sum of m − n + r normally distributed random variables each with variance one and

respective mean ci.

Inequality (2.12) applies as before but with r replacing p in the definition of m̃ and c

calculated over the relevant components p − r + 1 : p. Notice that the distribution of the

functional arises only from the components in the expansion for the solution xFILT which

are filtered, the other components are constants independent of the regularization parameter

λ. Equivalently the unregularized components do not contribute to the statistical properties

of the functional. It appears that the degrees of freedom of the functional is determined by

overall numerical rank of the subspace that defines the solution. This observation is a topic

for future research.

3. Implementation.
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3.1. The Newton Algorithm. In [17] a Newton algorithm to find σ using the original

formulation of the theory, without the centrality parameter, was presented. There it was based

on the use of the GSVD to find the root of F (σ) = J(σ)−m̃ = 0. The basic Newton iteration,

with line search parameter α(k), may be written generally as

σ(k+1) = σ(k)(1 + α(k) 1
2

(
σ(k)

‖Dx(σ(k))‖
)2(J(σ(k))− m̃)).(3.1)

The derivative is given by

J ′(σ) = − 2
σ3
‖Dx(σ)‖2.(3.2)

This can be determined by implicit differentiation of J(σ) in (2.3), but also follows more

easily from the expression for J in terms of the GSVD for the pair [Ã|D],

J(σ) = ‖k(σ)‖2 =
p∑
i=1

s2i
(σ2γ2

i + 1)
+

m∑
i=n+1

s2i , γi =
υi
µi
, σ =

1
λ
,(3.3)

combined with using the expansion (2.13) for the solution x(λ). Observe, as mentioned in

Remark 1, that the term
∑m
i=n+1 s

2
i is constant and so practically in the GSVD implementa-

tion this term is calculated only once. In this case we adjust m̃ = m̃ −
∑m
i=n+1 s

2
i and only

calculate the update of J for the other relevant components.

While, the algorithm for the truncated functional given by (2.17) is designed similarly

with function F defined by

F (σ) =
p∑

i=p−r+1

s2i
(σ2γ2

i + 1)
+

m∑
i=n+1

s2i − (m− n+ r) ≈ 0.(3.4)

it is of greater interest to consider an approach to make the calculation efficient for large scale

problems. In the following we introduce a method to obtain x(σ) and hence J(σ) iteratively.

3.2. The Hybrid LSQR Algorithm. The algorithm is based on Golub-Kahan iterative

bidiagonalization [21, 22]. Here, we only describe the essential components of the algorithm,

and refer to references for more details. Given initial vectors g0 ≡ 0, h1 ≡ b/β1, where

β1 ≡ ‖b‖ 6= 0, the Golub-Kahan iterative bidiagonalization computes, using two-term recur-

rences requiring only matrix-vector multipliciations with the matricesA andAT , orthonormal

vectors gi,hi, i = 1, 2, . . .

αigi = AThi − βigi−1 , ‖gi‖ = 1 ,(3.5)

βi+1hi+1 = Agi − αihi , ‖hi+1‖ = 1.(3.6)
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Let Hj ≡ [ h1 , . . . , hj ] ∈ Rm×j , Gj ≡ [ g1 , . . . , gj ] ∈ Rn×j and

Lj ≡


α1

β2 α2

. . . . . .
βj αj

 , Lj+ ≡
[

Lj
βj+1eTj

]
, Lj+ ∈ R(j+1)×j .

Then the recurrences (3.5-3.6) can be written in the matrix notation

AT Hj = Gj L
T
j , AGj = [Hj , hj+1 ]Lj+.(3.7)

With the observation [Hj ,hj+1]Tb = βe1, the j steps of the bidiagonalization yield a sub-

problem

Lj+ yj ≈ e1 β1.(3.8)

Then, when D = I , the least squares solution yj(σ) of the augmented system[
Lj+

1/σ Ij

]
yj(σ) ≈ e1 β1 ,(3.9)

transformed to the original variables through

xj(σ) ≡ Gjyj(σ).(3.10)

represents an LSQR approximation to the solution of the original problem (1.1) for one par-

ticular σ, see [21, 22]. Note that ‖xj(σ)‖22 = ‖Gjyj(σ)‖2 = ‖yj(σ)‖22. For the general

case when D 6= I , the problem (1.1) can be transformed to the so-called standard form, and

then the LSQR algorithm in the basic form can be applied, details of this transformation are

provided for example in [9].

In order to use the root finding algorithm described in Section 3.1 to determine optimal

σ, it is important that the updated values for x(σ(k)) and J(σ(k)) can be obtained efficiently

for each iteration. The solution x(σ(k)) for each σ(k) is computed by solving (3.9) with

the appropriate number of bidiagonalization steps j = j(σ(k)), and takes advantage of the

fact that the matrix Lj+ and the right-hand side e1 β1 do not depend on σ(k). If j(σ(k)) is

smaller than j(σ(i)) for some 1 ≤ i < k, the corresponding subblock of Lj+ can be used.

Otherwise the matrix Lj+ is augmented by computing additional steps in (3.5-3.6). Note

that construction of the matrix Lj+ is the most expensive part of the LSQR algorithm. Thus

reusing Lj+ makes the computation of x(σ(k)) efficient. The calculation of J(σ(k)) is clear

from the update x(σ(k)): it is approximated by the augmented residual for the approximate

solution xj(σ(k)).
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3.3. The Algorithm with Centrality Parameter. To account for the centrality parame-

ter c the algorithm needs modification. For ease of explanation we explicitly write functional

J as a function of both b and σ, J = J(b, σ). We have shown that J(b, σ) = ‖k(b, σ)‖2,

and that when σ is chosen appropriately, J(b, σ) will follow a χ2 distribution with expected

value that depends on its expected mean value. But by Theorem 2.2 this mean value is ex-

plicitly given by c = ‖c‖2 = ‖k(Ax, σ)‖2. We thus need to solve

FC(σ) := J(b, σ)− J(Ax, σ)− m̃ ≈ 0.(3.11)

Apparently we need to know x. But if x were known, we would actually solve using x0 = x

in (1.1) and then J(Ax, σ) = 0. On the other hand, suppose that indeed x is not known, but

we can find an estimate for b from the set of repeated measurements of the experiment which

are used to provide the covariance matrix Cb. Then we can replace Ax in (3.11) by b and

seek to solve FC(σ) ≈ 0. However, from (3.2)

∂FC
∂σ

= − 2
σ3

(‖Dx(b, σ)‖2 − ‖D(x(b, σ)‖2),(3.12)

and the functional FC need not be monotonic. Indeed, the root of FC(σ) = 0 need not exist.

An example illustrating this is shown in Figure 3.1.

FIG. 3.1. Example of the non-monotonicity of function FC in (3.11). FC(σ) is plotted against log10(σ). The
circles denote the values of the pairs (log10(σ(k)), FC(σ(k))) during the iteration to find the optimal choice of σ,
found at σ = 6.9e− 05 with value FC(σ) = −22.7.

The potential for the nondefinite bevavior of F ′C , when q 6= 0, illustrated in Figure 3.1

is most apparent if we look at the GSVD formulation. In particular, the equivalent equations

for the GSVD implementation are, for (3.11, 3.12), resp.

FC(σ) =
p∑
i=1

s2i − q2i
(σ2γ2

i + 1)
+

m∑
i=n+1

(s2i − q2i )− m̃ = 0, q = UTW
1/2
b A(x− x0), and(3.13)

∂FC
∂σ

= −2σ
p∑
i=1

ziγ
2
i

(σ2γ2
i + 1)2

, where zi = s2i − q2i .(3.14)
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3.3.1. Newton with Bisection to Minimize FC . We seek σ such that FC(σ) is close to

zero, equivalently, such that F 2
C(σ) is minimum. If there is a root such that FC(σ) = 0, it will

solve the minimization, otherwise we find σ such that F ′C(σ) = 0, and F 2
C(σ) is minimum.

As for the original Newton algorithm to solve F (σ) = 0, the algorithm is made more robust

by some basic observations. Both J(b, σ) and J(b, σ) which occur in FC(σ) are positive.

Indeed,

FC(σ) = ‖k(b, σ)‖2 − ‖k(b, σ)‖2 − m̃,

and both norms are monotonically decreasing with σ. Therefore,

‖k(b, σ)‖2 − ‖k(b, 0)‖2 − m̃ ≤ FC(σ) ≤ ‖k(b, σ)‖2 − m̃.

Because ‖k(b, σ)‖2 is itself monotonically decreasing with σ, for any σ > σmax, where

‖k(b, σmax)‖2 = m̃, necessarilyFC(σ) < 0, andF ′C(σmax) < 0. Likewise, ‖k(b, σmin)‖2 =

m̃ + ‖k(b, 0)‖2, provides a lower bound for σ. The algorithm to minimize F 2
C(σ) therefore

first solves for both σmin and σmax, so as to find a bracket on the optimal σ. Because these

two values are found using only the functional J(b, σ), the original fast convergent Newton

algorithm can be used, [17]. Indeed, determination of σmax solves the original central distri-

bution problem under the assumption that the given x0 = x, and can itself be used to give

an estimate of the solution, x(b, σmax). In the rare case that the vector z, defined from its

components zi, is itself definite, these bounds on σ effectively bracket the root of a monoton-

ically increasing function, and the original Newton algorithm can now be applied to function

FC to find its root. Otherwise we use simple bisection to find the minimum of F ′C(σ) within

the determined bracket.

REMARK 2. It might appear that another approach to solve in the case that x0 6= x

but b is available, would be to use b to find an estimate of x, and then to solve again using

the obtained value for the estimate of the expected value x as x0 in J(b, σ). However, in

this case we would need to find the estimate for x without regularization. We know that for

ill-conditioned problems, even without noise, the estimate of the solution x is unlikely to be

useful. While such an approach would therefore avoid the problem of finding the minimum

for FC , its success would be limited to problems which are well-conditioned. Experiments,

not reported here, confirm this observation.

4. Numerical Experiments. The major goal of the presented numerical experiments is

that they validate the hypothesis that the hybrid LSQR algorithm can be used to efficiently
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obtain the regularization parameter using the χ2 properties of the regularized functional for

large scale problems. Several experiments are presented. First, in Section 4.1, we contrast the

basic Newton algorithm implemented using direct GSVD solves and iterative hybrid LSQR

solutions for a set of small scale test problems. The algorithm is implemented as described in

Section 3.1 and is based on the original work in [17]. In all cases it is implemented in exactly

the same way for both direct GSVD and iterative hybrid LSQR versions, namely line search

and bracketing are performed equivalently. A comparison, in Section 4.2, is also provided

with two other standard methods for estimating the regularization parameter, the L-curve

and unbiased predictive risk estimator (UPRE), see for example [9, 27]. Because the hybrid

LSQR is iterative, its performance depends on the number of steps of the bidiagonalization

algorithm (3.5-3.6). As proposed in the original papers [21, 22], two stopping criteria for the

generation of the bidiagonal system are used

‖rj‖ ≤ btol ‖b‖ + atol ‖A‖ ‖xj‖ and
‖AT rj‖
‖A‖ ‖rj‖

≤ atol.(4.1)

The quantities ‖rj‖, ‖xj‖, ‖A‖, and ‖AT rj‖ can be estimated at minimal cost in the LSQR it-

erations. The quantities atol, btol are user specified and should reflect the expected accuracy

of the data, see [21] for more details. We therefore also examine the relationship betweeon

the estimate of σ and the size of the bidiagonal system used at each inner iteration, together

with the choices for atol and btol, see Section 4.3. Finally, we demonstrate that the new

approach can be used for the solution of large scale problems. Two examples are presented,

one the deconvolution of real one dimensional seismic signals, Section 4.4 and the second a

standard large scale image deblurring test problem, Section 4.5.

4.1. Comparing hybrid LSQR and GSVD. Benchmark problems, shaw, ilaplace,

heat and phillips, from the Regularization Tool Box [8] are implemented for different

noise levels. The parameter σ obtained using the iterative hybrid LSQR solution is contrasted

with that obtained by the direct GSVD solution. In examples using the toolbox the true so-

lutions xtrue, and matrices A defining the models, were obtained using the relevant function

calls to the tool box and true measurements found from btrue = Axtrue. To obtain noisy

data sets the Matlab R© function randn [15], which yields standard normal data, was used

to obtain a perturbation matrix E of size m × 500, for b of length m. Each column el,

l = 1 : 500, of E was normalized to two norm length ‖b‖ by el = el‖b‖/‖el‖ and the 500

noisy right hand side vectors bl obtained as bl = b+ εel. Data sets were generated for noise

levels ε = .001, .005, .01, .05 and .1. Given the 500 samples we can then directly calculate
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the covariance Cb of the measurements. This method generates a covariance matrix which

is nearly diagonal, hence in this first set of experiments we used the diagonal weighting ma-

trix C1/2
b = diag(σ1, σ2, . . . , σm). Also, all experiments, other than those with the problem

shaw which uses D = I , used D to approximate the first derivative operator.

In this first set of experiments we use very small problems, problem size n = 64, and

impose a very tight confidence interval (2.12) using α = .9999, for tolerance .0014 on con-

vergence of the Newton iteration. For the LSQR iterations we use atol = 100 ∗ btol and

btol = 10−9, and allow the subproblem size to reach full size 64. At each outer Newton

step the LSQR algorithm adjusts the size of the projected problem, j(σ) such that the LSQR

algorithm meets the convergence criteria (4.1), which may be different for each chosen σ(k).

Therefore, for each noise level we track the average of j(σ(k)) over outer steps k = 1, 2, ...,

where the maximum number allowed is 15. For both direct and iterative solves we report

the total number of calculations K ≤ 15 of σ, equivalently of problem solves, where the

count includes the bracketing and subsequent Newton iterations. P-values for a paired t-test

between GSVD and hybrid LSQR results for both K and for σ are also given.

The initial experiments are designed to assess the consistency of the σ update strategy

when implemented for the hybrid LSQR algorithm. Therefore the results given in Table 4.1

are for the solution of F (σ) = 0, using the unrealistic estimate x = x0 = 0.

The results in Table 4.1, demonstrate generally a very high correlation, p-value near 1,

between GSVD and hybrid LSQR algorithms for both the average number of solution solves

K and for σ. Overall the average size of the projected problem is found to be much smaller

than the actual problem size, and decreases with increasing noise level as anticipated. The

exceptions, those where the correlation is not high, namely low noise for the problem heat

and high noise for ilaplace, can be explained by the regularizing properties of the hy-

brid LSQR algorithm. Specifically, for the former case with high noise, the LSQR generates

a small bidiagonal system, hence introducing significant regularization itself by excluding

noisy components of the solution. Consequently, it is likely that the obtained optimal regu-

larization parameter imposes less regularization than is needed for the GSVD algorithm. On

the other hand, in the latter case, the LSQR algorithm iterates almost to the actual full prob-

lem size of n = 64 and more outer regularization is needed. These characteristics will be

examined in more detail in Section 4.3.

Table 4.2 provides equivalent experiments to those in Table 4.1, but for the minimization

of the discrepancy F 2
C(σ). Therefore, the algorithm first finds the minimum and maximum
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shaw
Noise Average Iterations K P value

Level ε j(σ(k)) GSVD LSQR Iteration σ
1e− 03 13.1 7.9 7.9 1.0 1.0
5e− 03 11.5 7.7 7.6 0.6 0.3
1e− 02 10.3 7.0 7.0 1.0 1.0
5e− 02 7.2 7.1 7.1 1.0 1.0
1e− 01 6.2 7.0 7.0 0.9 0.8

ilaplace
1e− 03 16.0 7.3 7.3 1.0 1.0
5e− 03 12.2 6.3 6.3 1.0 1.0
1e− 02 10.7 6.4 6.4 0.9 1.0
5e− 02 8.0 6.5 6.5 0.9 1.0
1e− 01 7.4 6.5 6.5 0.9 0.5

heat
1e− 03 63.8 5.9 5.8 0.9 0.0
5e− 03 63.9 5.5 5.5 1.0 1.0
1e− 02 47.6 5.7 5.7 1.0 1.0
5e− 02 29.4 5.8 5.8 1.0 1.0
1e− 01 22.4 6.0 6.0 1.0 1.0

phillips
1e− 03 37.4 10.7 10.7 1.0 1.0
5e− 03 28.6 7.4 7.4 1.0 1.0
1e− 02 25.0 6.8 6.8 1.0 1.0
5e− 02 15.4 6.1 6.1 1.0 1.0
1e− 01 12.8 6.1 6.1 1.0 1.0

TABLE 4.1
The last two columns are the P-values for paired t-tests between GSVD and LSQR results, for both the obtained

σ and the number of σ updates. The first column is the noise level ε used in generating the noisy data. These results
are for problem size 64, over 500 tests of each problem, and use x0 = 0 in the definition of F (σ).

values for σ as described in Section 3.3.1, and then carries out bisection to find the minimal

discrepancy. The iteration count includes all three stages. To simulate the use of average

measurement data, we form the average of the bl for the given noise level and use this as b.

Here the average relative errors in the solutions are also calculated, and the failure count is

given, where a failure is indicated by a relative error greater than 50%. The relative errors

and failures increase with the noise level, but in general the results indicate that the algorithm

is robust at finding good regularization parameters. Also these results demonstrate that a high

correlation for the obtained σ is not necessary for achieving low relative error, see for example

noise level .01 for problem ilaplace. These results reinforce the conclusions about the

robustness of the χ2 method for small scale problems when used with prior information b

instead of x as presented in [17].
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shaw
Noise Average Iterations K P value Relative Error Failures

Level ε j(σ(k)) GSVD LSQR Iteration σ GSVD LSQR GSVD LSQR
1e− 03 10.5 31.1 31.2 0.8 1.0 0.067 0.067 0 0
5e− 03 9.7 28.4 28.1 0.9 1.0 0.110 0.110 0 0
1e− 02 8.7 29.4 29.2 0.7 1.0 0.135 0.135 0 0
5e− 02 7.4 26.7 26.5 0.9 1.0 0.189 0.189 2 2
1e− 01 6.9 26.5 25.8 0.8 1.0 0.215 0.215 0 0

ilaplace
1e− 03 8.5 28.2 31.2 1.0 1.0 0.023 0.023 0 0
5e− 03 6.5 26.8 30.6 1.0 1.0 0.053 0.053 1 1
1e− 02 5.9 26.5 30.6 0.0 0.4 0.084 0.075 1 1
5e− 02 4.7 25.6 30.8 0.9 1.0 0.161 0.162 16 16
1e− 01 4.3 24.1 30.9 0.7 1.0 0.211 0.211 48 47

heat
1e− 03 34.1 27.9 29.6 0.2 0.8 0.073 0.073 0 1
5e− 03 28.8 27.3 29.6 0.9 1.0 0.133 0.133 0 0
1e− 02 23.6 26.6 30.1 1.0 1.0 0.179 0.179 1 1
5e− 02 14.8 26.1 30.3 1.0 1.0 0.304 0.304 48 49
1e− 01 11.1 24.5 30.3 0.8 1.0 0.375 0.375 158 158

phillips
1e− 03 22.0 33.4 34.5 1.0 1.0 0.017 0.017 0 0
5e− 03 14.7 28.3 31.6 0.6 1.0 0.029 0.029 0 0
1e− 02 12.1 27.5 30.9 1.0 1.0 0.039 0.039 0 0
5e− 02 8.0 24.6 30.2 0.9 1.0 0.079 0.079 0 0
1e− 01 7.0 25.4 30.5 0.9 1.0 0.112 0.112 0 0

TABLE 4.2
Comparison of the results using the hybrid LSQR and the GSVD based algorithm with centrality parameter

obtained using the average of the right hand side vectors. The last two columns are the P-values for paired t-tests
between GSVD and LSQR results, for both the obtained σ and the number of σ updates. The first column is the noise
level ε used in generating the noisy data. These results are for problem size 64, over 500 tests of each problem.
The mean relative errors are measured in the least squares norm as compared to the known exact solutions and the
failure count is the number of problems which did not achieve relative error less than 50%.

4.2. Other Regularization Techniques. Extensive results contrasting the χ2 method

with a priori information x0 = x for the L-curve and UPRE techniques for finding the

regularization parameter were presented in [17]. In Table 4.3 we thus present just one set

of experiments to demonstrate that the new algorithm with the a priori information b is

competitive.

The problem size is 128 but all other settings are the same as for the experiments reviwed

in Table 4.2, except that the size of the projected problem is limited to 128, and the total

sample size is 250 instead of 500. The failure counts and average relative least squared errors

are given. The entries in bold face in each row indicate the result with minimum average
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relative error. Each method is competitive for some problem set, but less competitive for

another problem set. It can also now be seen, compare with Table 4.2, that the hybrid LSQR

algorithm has the potential to outperform the direct solve using the GSVD, even for this

relatively small problem size of 128. We anticipate the GSVD to become less reliable as the

problem size increases. Moreover, the results for the hybrid LSQR are not tuned in any regard

to its convergence parameters. This tuning is the topic of the next set of results.

shaw
Least Squares Error Failure Count

ε GSVD LSQR Lcurve UPRE GSVD LSQR Lcurve UPRE
1e− 03 0.098 0.098 0.076 0.099 1 1 0 33
5e− 03 0.120 0.120 0.097 0.121 0 0 0 44
1e− 02 0.199 0.180 0.183 0.216 0 0 0 44
5e− 02 0.229 0.206 0.200 0.239 1 1 0 63
1e− 01 0.276 0.236 0.241 0.259 5 4 0 71

ilaplace
1e− 03 0.064 0.052 0.065 0.069 0 1 0 38
5e− 03 0.091 0.075 0.077 0.088 0 0 0 34
1e− 02 0.146 0.151 0.125 0.160 3 6 0 42
5e− 02 0.200 0.204 0.166 0.195 22 18 0 71
1e− 01 0.247 0.230 0.231 0.230 67 53 63 112

heat
1e− 03 0.118 0.118 0.080 0.093 0 0 128 0
5e− 03 0.152 0.152 0.114 0.127 0 0 157 0
1e− 02 0.272 0.272 0.245 0.242 16 16 245 15
5e− 02 0.327 0.324 NaN 0.305 46 40 250 21
1e− 01 0.408 0.404 NaN 0.396 119 109 250 61

phillips
1e− 03 0.025 0.025 0.025 0.040 0 0 0 4
5e− 03 0.033 0.033 0.028 0.044 0 0 0 4
1e− 02 0.065 0.065 0.047 0.095 0 0 0 18
5e− 02 0.100 0.099 0.080 0.109 0 0 0 34
1e− 01 0.137 0.136 0.123 0.139 2 2 0 28

TABLE 4.3
Results are reported for problem size 128 over datasets each of size 250 for each noise level. The errors are

relative least squares errors with respect to the exact solution, and the failure counts are the number of solutions
in each case which did not achieve a relative error less than 50%. The parameter settings are set as in Table 4.2,
except that the problem size of the projected problem is allowed to reach size 128, consistent with the given problem
size. NaN indicates that the relative error could not be calculated because the test failed for all samples. Minimum
values are in bold face for each problem set.

4.3. Characteristics of the hybrid LSQR algorithm. To verify the robustness of the

hybrid LSQR algorithm with respect to the maximum size j(σ) of the projected subproblem,

as well as to illustrate the dependence of σ on j(σ), we present the following experiments.
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Problems shaw and phillips are solved for problem size n = 512 with an error level of

10%, the constraint j(σ) ≤ 40 and different choices for btol. All other parameters are the

same as in the previous section. The legend of each figure, in Figure 4.1 indicates the value

of btol and the resulting least squares error in the solution. Plotted are the subproblem size

j(σ(k)) against σ(k), for increasing values of btol. In all cases the projected problem size

is far smaller than the maximum limit of 40, which supports the hypothesis that the hybrid

LSQR will be cost effective for larger problems. The actual values of σ obtained in each

case for increasing btol are 3.1756, 3.1756, 3.2540, 28.5962, 750000 and are .0016, .0016,

.0207, 250000, 750000, for shaw and phillips, resp. The large values here indicate that

no regularization is needed, λ is very small, and the actual value is determined by the upper

maximum imposed by the algorithm. Equivalently, when btol is large, the hybrid iteration

stops early, with a small projected problem size j, and no noise is introduced into the approx-

imate solution. Therefore very little or no regularization is required but the obtained solution

is less accurate because insufficient information was actually included in the projected prob-

lem. For smaller btol, the projected problem increases in size and the converged value of σ is

also smaller, ie more regularization is required.

(a) (b)

FIG. 4.1. Illustrating the dependence of σ on j(σ) for problem with noise level 10% for increasing btol. The
values in the legend are the noise level and resulting relative least squares error for the solution. Subfigure (a) for
problem shaw and (b) for phillips. Problem size 512.

The optimal solutions in each case, for btol = 10−4 and 10−5 for shaw and phillips,

resp. are compared with solutions using the L-curve and UPRE in Figure 4.2, for which the

errors are .197 and 1.198, and .076 and .501 for each problem resp. Good solutions are

obtained by the hybrid LSQR algorithm.



November 19, 2008 19

(a) (b)

FIG. 4.2. Illustrating the solution for the different methods, for the optimal choice of btol from the data given
in Figure 4.1 compared with L-curve and UPRE solutions. Subfigure (a) for problem shaw and (b) for phillips.
Problem size 512. Solution x is plotted against its index.

4.4. Seismic Signal Restoration. Here we present the result of deblurring real seismic

data. A real data set of 48 seismic signals of length 3000 is considered. The signal variance

pointwise can therefore be calculated over all 48 signals. For this data the underlying point

spread function, ie the signal blur described by matrix A, has been estimated numerically by

an approach described in [25], and is not the focus of the analysis here. Instead our purpose is

to show that the algorithms can be successfully used on real data. Because there is no known

true solution we estimate the reliability of the deblurring result by downsampling the signals

and restoring the signals at different resolutions, 2 : 1, 5 : 1, 10 : 1, 20 : 1, and 100 : 1,

corresponding to using m = 1500, 600, 300, 150, and 30, resp. The signals are restored

using UPRE and both versions of the χ2 algorithm, i.e. with x0 = 0 and root finding for

F (σ), as well as using the average b in the minimization of F 2
C(σ). The average signal b is

formed from the average over all 48 signals. White noise weighting is used, calculated from

the average covariance pointwise of all 48 signals.

The results indicate, that except for very low resolution, the results of all implementa-

tions are consistent across resolutions. Indeed, the calculated values for σ are also consistent

across resolutions for all three algorithms. It is apparent that the χ2 methods are more suc-

cessful at removing noise from the underlying signal. For this application it is important that

spurious oscillations are removed but that the signals are not oversmoothed. The intent is to

identify major signal arrival times, and to distinquish the arrivals of different features in the

signal, which correspond to different geophysical reflections at the level of the core-mantel

boundary in the Earth, and hence assist with interpretation of the structure of the core-mantel

boundary. With this in mind, we deduce that the solutions obtained through minimization of
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the discrepancy F 2
C(σ) oversmooth the solution. Possibly this is due to the use of the overly

smoothed prior information b. Moreover, this suggests that it may indeed be preferable to

in general use the simpler algorithm which seeks to solve F (σ) = 0 with prior information

x0 = 0. The image deblurring example in the next section therefore uses only the root finding

algorithm.

4.5. Image Deblurring. We now turn to our ultimate goal of demonstrating the robust-

ness of the hybrid LSQR method for solving large scale ill-posed problems. To implement the

code for large scale problems we take note that calculations in the bidiagonalization require

only matrix-vector multiplications. To accomplish this we use the object-oriented approach

for evaluating operations with matrices describing point spread functions provided in the

RESTORE TOOLS [18]. We use problem Grain which is provided as one of the exam-

ples, with blurring matrix A of effective size 2562 × 2562, for a stacked 2D image of size

256 × 256. A noisy version of Grain is obtained by adding noise to btrue in the same way

as for the earlier test problems in Section 4.1. Because no prior information is actually avail-

able, and would not likely be available for large scale deblurring, we run the basic Newton

algorithm for function F (σ) with x0 = 0. In Figure 4.4 we illustrate the original image,

its blurred noisy version and the best solution obtained with the basic LSQR algorithm and

with the hybrid LSQR algorithm, i.e. with additional regularization. This is for a case with

15% noise, normalized with ‖(btrue − b)‖/‖b‖ = .15. Because of the problem size we

use btol = 10−6 and atol = 10−4. The best solution was in both cases obtained using the

projected problem of the size 15.

The results are comparable but the signal to noise ratios calculated for solving with in-

creasing projected problem size show that the regularization improves the basic LSQR so-

lution, see Figure 4.5. Indeed, these results confirm the semi-convergence behavior of the

LSQR iteration, and that the regularization stabilizes the process when the LSQR iteration

converges to a solution for which regularization is still required. This is illustrated clearly

with the relative error plot in Figure 4.5 and supports the similar observation in [2]. Fig-

ure 4.5 (c) illustrates the decrease of σ with the size of the projected problem, corresponding

to increase in regularization as greater noise is built into the projected problem. The results

presented for this one problem are illustrative of experiments with different noise levels, and

additional problems also taken from the RESTORE TOOLS set.

In these experiments with large scale problems we found that the estimates of F (σ)

obtained from the projected problem were not close enough for use in the χ2 parameter choice
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(a)

(b)

(c)

FIG. 4.3. (a) the UPRE solution, (b) the solution using root of F (σ) (c) the solution using the minimum
of F 2

C(σ). Regularization parameters are consistent across resolutions: σ = 0.01005, σ = 0.00058 and σ =
0.000001 for each method, resp. Each solution is normalized to maximum height 1 and shifted to align at the
position of the maximum, as is standard in the seismic literature. The solutions are plotted against the index of the
original signal of length 3000.
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(a) (b)

(c) (d)

FIG. 4.4. Problem Grain with noise of 15% added. (a) the true solution, (b) the noisy blurred right hand
side, (c) the basic LSQR solution (d) the hybrid LSQR solution.

algorithm, which is predicated on accurate estimates of this underlying functional. Therefore

we actually updated F (σ) directly through use of the updated solution x(σ) rather than using

the estimate based on the residual of the projected problem. The cost of this additional step

is minimal in relation to the overall bidiagonalization step.

5. Conclusions and Future Work. The χ2 approach for estimation of the regular-

ization parameter arising in the solution of numerically ill-posed problems by generalized

Tikhonov regularization has been extended for large-scale problems through its combination

with an iterative LSQR algorithm. Numerical results validate the method as compared to

the direct GSVD algorithm for a series of test problems available in the literature. The uti-

lization of the theory does rely on the use of some prior information, such as an estimate

of the expected value of the model parameters, x and an estimate of the covariance Cb for

the measurement variables b. On the other hand, the image deblurring example presented in
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(a) (b)

(c)

FIG. 4.5. (a) the signal to noise ratio for problem Grain with noise of 15% added for increasing subproblem
size. Signal to noise ratio is calculated as 10 log10(1/e), where e is the relative error ‖xtrue − x(σ))‖/‖xtrue‖
illustrated in (b). (c) shows σ in each case. (Recall the regularization parameter λ = 1/σ.)

Section 4.5 used only an estimate of the signal covariance and no estimate of either x or b.

This indicates that the technique can be useful even without this additional prior information.

For the situation in which x0 6= x, for example x0 = 0, the theory was extended.

In particular, modifying the basic theory presented in [17] yields the general noncentral χ2

distribution of the underlying functional. A new algorithm combining Newton with bisec-

tion search for obtaining the regularization parameter in this case was also developed and

validated. While the numerical results with simulated data support the use of this more com-

plicated algorithm, the results for the seismic signal restoration and the image deblurring

suggest that the algorithm could actually be detrimental and lead to oversmoothing.

The theory has been modified when the underlying resolution matrix is ill-conditioned so

that the resulting functional is still a χ2 random variable at optimum, but with reduced degrees
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of freedom. Utilization of this result for severely ill-conditioned problems, and its possible

extension to explain results in a basis other than the basis given by the GSVD expansion, is a

topic for future work.

There is considerable work in the statistics literature on the estimate of variance in mea-

surement data without repeat measurements [26]. A topic of future study is thus to utilize this

theory so as to make the χ2 approach useful for data with limited experimental data. Addi-

tional study of the stabilizing effect of the regularization combined with the LSQR solution

is also needed. The hybrid LSQR approach presented here does stabilize the LSQR solution,

but as can be seen from Figure 4.5, the stabilization for large scale problems is limited. Fur-

ther modification of the method may be related to the number of degrees of freedom in the

subproblem and the choice of the stopping criteria for the bidiagonalization process. Future

work will also consider the impact of preconditioning for improving the algorithm.

Acknowledgement. The first author completed portions of this work while visiting the

Institute of Computer Science at the Academy of Sciences of the Czech Republic and the De-

partment of Informatics and Mathematical Modeling at the Technical University of Denmark.

REFERENCES

[1] Bennett, A., 2005, Inverse Modeling of the Ocean and Atmosphere, (Cambridge University Press), 234.
[2] Chung, J., Nagy, J., and O’Leary, D. P., 2008, A weighted GCV method for Lanczos hybrid regularization,

ETNA, 28, 149-167.
[3] Eldén, L., 1982, A weighted pseudoinverse, generalized singular values, and constrained least squares prob-

lems, BIT, 22, 487-502.
[4] R. D. Fierro, G. H. Golub, P. C. Hansen, and D. P. O’Leary, 1997, Regularization by truncated total least

squares, SIAM J. Sci. Stat. Comp., 18, 1225-1241.
[5] Golub, G. H. and van Loan, C., 1996, Matrix Computations, (John Hopkins Press, Baltimore), 3rd ed.
[6] Hanke, M, and Hansen, P. C., 1993, Regularization methods for large-scale problems, Surveys Math. Indust.

3, 253-315.
[7] Hansen, P. C., 1989, Regularization, GSVD and truncated GSVD, BIT, 6, 491-504.
[8] Hansen, P. C., 1994, Regularization tools: A Matlab package for analysis and solution of discrete ill-posed

problems, Numerical Algorithms, 6, 1-35.
[9] Hansen, P. C., 1998, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion,

(SIAM Monographs on Mathematical Modeling and Computation 4).
[10] Hansen, P. C., Kilmer, M. E., and Kjeldsen, R. H., 2006, Exploiting residual information in the parameter

choice for discrete ill-posed problems, BIT, 46, 41-59.
[11] Hansen, P. C., Nagy, J. G., and O’Leary, D. P., 2006, Deblurring Images, Matrices, Spectra and Filtering,

(SIAM Fundamentals of Algorithms).
[12] Kilmer, M. E., and O’Leary, D. P., 2001, Choosing regularization parameters in iterative methods for ill-posed

problems, SIAM J. Numer. Anal. Appl., 22, 1204-1221.
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