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Abstract

We discuss weighted least squares estimates of ill-conditioned linear inverse problems where weights
are chosen to be inverse error covariance matrices. Least squares estimators are the maximum like-
lihood estimate for normally distributed data and parameters, but here we do not assume particular
probability distributions. Weights for the estimator are found by ensuring its minimum follows a
χ2 distribution. Previous work with this approach has shown that the it is competitive with regu-
larization methods such as the L-curve and Generalized Cross Validation (GCV) [23]. In this work
we extend the method to find diagonal weighting matrices, rather than a scalar regularization pa-
rameter. Diagonal weighting matrices are advantageous because they give piecewise smooth least
squares estimates and hence are a mechanism through which least squares can be used to estimate
discontinuous parameters. This is explained by viewing least squares estimation as a constrained
optimization problem. Results with diagonal weighting matrices are given for a benchmark discon-
tinuous inverse problem from [15]. In addition, the method is used to estimate soil moisture from
data collected in the Dry Creek Watershed near Boise, Idaho. Parameter estimates are found that
combine two different types of measurements, and weighting matrices are found that incorporate
uncertainty due to spatial variation so that the parameters can be used over larger scales than those
that were measured.

Keywords: Least squares, covariance, regularization, hydrology

1. Introduction

Inverse problems arise when information about a system or inputs into a system are inferred
from measurements. For example, parameters in a geophysical model, atmospheric event, biological
or chemical processes, material or electrical properties or in constructing an image. These problems
are typically iill-conditioned when the underlying infinite dimensional problem is ill-posed, or when
the system cannot be resolved by the data.

Regularization is an approach to ill-posed or ill-conditioned inverse problems where a related
problem is constructed with a solution estimate that is close to the solution of the original problem.
Tikhonov regularization [39] is the most common approach while more recently total variation,
first introduced in [32], has been widely used and analyzed. Quantitative estimates of the distance
between the regularized problem and the original problem are well known for quadratic regularizers
while some for total variation are given in [6]. Alternatively, regularized solutions can be viewed as
solutions of the original problem if we regularize with constraints on possible states of the problem
[3]. In other words, we can attempt to resolve the ill-posedness in the problem, and regularize it, by
adding more information to the problem. This is the view of regularization we take in this work.

We describe our approach on discrete linear inverse problems of the form

Ax = b

where the goal is to recover parameters x ∈ Rn from measurements b ∈ Rm based on model
A ∈ Rmxn, which is an ill-conditioned matrix. The matrix A may be from a linear problem, a linear
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approximation to a nonlinear problem, or this linear system may be solved as part of a nonlinear
algorithm. The problem may be viewed stochastically if we consider that measurements have noise
ε and the linear system becomes:

Ax = b + ε. (1)

Solution of the linear system requires initial parameter estimates x0 which also have uncertainty
f , thus

x = x0 + f . (2)

Practitioners may supply x0 and statistical properties of f , but more often x0 is taken to be 0 with
unknown error statistics f . This is an example of how including more information in the problem
can be viewed as regularizing the problem. In this case, we find the parameter estimate x̂ that
minimizes of the sum of the weighted errors ε and f :

x̂ = arg min
x
||Wε(b−Ax)||p1 + ||Wf (x− x0)||p2 . (3)

If the problem is regularized with a first or second order derivative, the matrix Wf can weight the
error in the initial derivative estimate rather than initial parameter estimate.

The choice of weights Wε and Wf significantly effects the estimate x̂, as does the choice of norm
p1 and p2. Absolute deviation and total variation are the case when p2 = 1 [2, 32], and this choice
gives less weight to outliers than when p2 > 1. Statistically, p2 = 1 gives the most likely solution
if the parameters are exponentially distributed [24]. Methods with this norm, for example LASSO,
are often used for discontinuous problems in order to preserve edges of non-smooth solutions, but
they can be computational complex because the functional is not differentiable at points for which
x0 = x.

This simplest choice of norm is p1 = p2 = 2 because the solution estimate x̂ can be given
explicitly. This is generalized Tikhonov regularization [39], or ridge regression [19] and is the most
likely solution when the data and parameters are normally distributed. However, when Wε or Wf

is a constant times the identity matrix, large weight is placed on the error outliers and the estimate
x̂ can be unecessarily smooth. Smoothness may be desirable if the data are too noisy, however,
some important information in the noise can be lost. Optimally, an algorithm should reduce the
oscillatory noise while preserving edges. If the solution contains sharp edges or fronts one approach
is to take p2 as close to 1 as possible, or find some approximation to it [14].

In this work we explore taking the simplest choice p1 = p2 = 2 and propose that since weighting
matrices Wε or Wf can be chosen so that the estimate x̂ is piecewise smooth, x̂ can be discontinuous.
Matrix weights allow accurate weighting of outliers in ε or f so that their squared value does not
inappropriately influence the solution estimate. The goal of this work is to develop an approach to
estimate good weighting matrices.

In Section 2 we show how discontinuous parameters can be found with the least squares estimator
in two dimensions by viewing regularization as constrained optimization. In Section 3 we describe
a method to find weights which give piecewise smooth least squares estimates. This method is
an extension of the χ2 method [21, 22], and we illustrate its effectiveness in finding discontinuous
parameters by solving a benchmark ill-conditioned problem in [15]. In Section 4 we use the method
to find matrix weights that quantify uncertainty when estimating water content in soils. Results
are shown for soil moisture estimation with the van Genuchten equation [40] in the Dry Creek
Watershed near Boise, Idaho. The resulting parameters and their uncertainty can be used in large
scale processes.

2. Regularization and Constrained Optimization

In order to see that appropriate weighting matrices can give non-smooth least squares estimates
we write (3) with p1 = p2 = 2 as
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min
∑m
i=1

(
bi −

∑n
j=1Aijxj

)2
(4)

s.t
∑n
i=1(x− x0)2i ≤ t. (5)

The solution is

x̂ = arg min
x


m∑
i=1

bi − n∑
j=1

Aijxj

2

+ λ

n∑
i=1

(x− x0)2i


where λ represents the Lagrange multiplier for the constraint. This solution is equivalent to the
solution from Tikhonov regularization with Wε = Wf = I. Alternatively, the choice p1 = 2, p2 = 1,
least squares with absolute deviation, has the same objective function (4) but the constraint is now

s.t.

n∑
i=1

|x− x0|i ≤ t (6)

and the solution is

x̂ = arg min
x


m∑
i=1

bi − n∑
j=1

Aijxj

2

+ λ

n∑
i=1

|x− x0|i

 .

Figure 1 contains contour plots of the objective function (4) and both constraints in two dimensions.
Figure 1(a) shows the constraint (5) while Figure 1(b) shows (6). The contours of the objective
function form ellipses, while the constraints form a circle in (a) and a diamond in (b). The solution of
the constrained optimization problem is the lowest point (x̂, ŷ) where the boundary of the constraint
region intersects the lowest level contour of the objective function. In (a) where p2 = 2 the geometry
of the intersection of the circle and ellipse is smooth, and this is why least squares approaches produce
smooth solutions. Alternatively in (b), when p2 = 1, there are points in the constraint region that are
perpendicular to the objective function, thus absolute deviation can produce non-smooth solutions
[28].

When p2 = 2 we can turn the circle into a square, and hence introduce the ability to obtain non-
smooth least squares solutions, by applying multiple constraints. The objective function remains
(4) but we apply n constraints

s.t. (x− x0)2i ≤ tσ2
i i = 1, . . . , n. (7)

The solution is

x̂ = arg min
x


m∑
i=1

bi − n∑
j=1

Aijxj

2

+

n∑
i=1

λi(x− x0)2i

 (8)

where now there are n Lagrange multipliers λ1, . . . , λn. Multiple constraints in two dimensions
are plotted in Figure 2. The solution must lie in the square formed by the two constraints, thus
the constraint region can also be perpendicular to contours of the objective function and non-
smooth estimates can be obtained with multiple quadratic constraints. The potential for non-smooth
solutions in higher dimensions is significant, because computationally the solution when p2 = 2 is
significantly simpler than when p2 = 1. However, this approach relies on calculating n Lagrange
multipliers.
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(a) (b)

Figure 1: 2-D Illustration of constrained optimization of (4), (a) quadratic constraint (5) (b) absolute
constraint (6).

Figure 2: 2-D Illustration of constrained optimization of (4) with multiple quadratic constraints (7).
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The approach we take to calculate these multipliers uses the fact that the solution (8) may be
interpreted as the Maximum a Posteriori or MAP estimate [9]. If weights Wε and Wf are chosen
to be error covariance matrices Cε = cov(ε) and Cf = cov(f), the least squares estimate is

x̂ = arg min
x

{
(b−Ax)TC−1ε (b−Ax) + (x− x0)TC−1f (x− x0)

}
.

This is equivalent to the solution of the constrained optimization problem (4) and (8) with multiple
constraints if we rescale the problem to

Ãx = b̃ + ε̃ (9)

where the tilde˜represents pre-multiplication of the original variable by C
−1/2
ε , e.g. Ã = C

−1/2
ε A.

In addition, we assume there is no correlation in the errors, i.e.

Cε = diag((σε1)2, . . . , (σεm)2)

Cf = diag((σf1 )2, . . . , (σfn)2)

with (σεi )
2 = var(εi) and (σfi )2 = var(fi), and σfi = 1/λi. This statistical interpretation of the

weights in (3) and multipliers in (8) gives us a method for calculating them, and we term it the χ2

method for parameter estimation and uncertainty quantification [21, 22, 23, 31].

3. χ2 Method

The χ2 method can be used to estimate weights for the initial parameter or data misfits in (3)
when p1 = p2 = 2. It is based on the assumption that the matrix weights Wε and Wf are inverse
covariances matrices C−1ε and C−1f , respectively, however, the specific probability distributions of
the errors ε and f are not needed or calculated. This makes the method more efficient than statistical
or Bayesian approaches to inverse problems. The interpretation of the weighting matrices as inverse
covariances is intuitive even in a non-stocastic setting because the errors in initial estimates are
penalized according to their inverse variance, while scalar weights give all errors the same penalty.
This means that the parameter estimate x̂ in the χ2 method is the one that minimizes the errors in
a weighted least squares sense, where the weights are chosen to be the inverse covariance matrices
for the errors, i.e x̂ minimizes the functional

J (x) = (b−Ax)TC−1ε (b−Ax) + (x− x0)TC−1f (x− x0). (10)

Even though we use least squares, we do not assume the data or parameter errors are normally
distributed, thus this is an M -estimator [11].

3.1. Relationship to Discrepancy Principle

If we have an estimate of the measurement noise σε, Morozov’s discrepancy principle [26] can be
used to choose the regularization parameter α > 0 in

x̂α = arg min
x
||b−Ax||22 + α||x− x0||22.

It is based on the residual principle in the following theorem.

Theorem 1. (Discrepancy Principle [29]) Assume ||b||2 > δ. If α is the root of

||b−Ax̂α||2 = ||b−A(ATA + αI)−1ATb||2 = Cδ

where C > 1 is a constant, then
lim
δ→0
||x̂α − x|| = 0
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This theorem states that the regularized estimate x̂α will tend towards the true solution x as
the size of the noise goes to zero. In real applications the noise does not typically go to zero, and
the discrepancy principle is implemented in the following manner: choose α so that

||b−Ax̂α||22 = ||ε||22 ≈ mσ2
ε .

If the problem is re-scaled as in (9) so that ||ε̃||2 = 1 then the discrepancy principle is implemented
as

||b̃− Ãx̂α||22 ≈ m. (11)

In the following Theorem and Corollary we give some well known properties about least squares
functionals as random variables, see for example [1]. They will be used to show that even though
the residual principle holds as the noise goes to zero, (11) may not be a good criteria from which to
choose the regularization parameter.

Theorem 2. Assume the elements of b and x are independent and identically distributed random
variables with covariance matrices Cε and Cf , respectively.

Part A: Let Jobs(x) = ||b̃ − Ãx||22. Then Jobs(x) is a χ2 random variable with m degrees of
freedom if the elements of b are normally distributed.

Part B: Let J (x) be as defined by (10). Then J (x) is a χ2 random variable with m+ n degrees
of freedom if the elements of b and x are normally distributed.

Since the expected value of a χ2 random variable is equal to its degrees of freedom, the discrep-
ancy principle could be viewed as using Part A of Theorem 2 to find the regularization parameter.
However, if the functionals in Parts A and B are evaluated at parameter estimates found with the
data, the degrees of freedom in the resulting χ2 variable are reduced by the number of parameters
as stated in the following Corollary.

Corollary 3. If the same assumptions hold as in Theorem 2 then
Part A: Let x̂obs = arg minx Jobs(x), then Jobs(x̂obs) is a χ2 random variable with m−n degrees

of freedom if the elements of b are normally distributed.
Part B: Let x̂ = arg minx J (x) as defined by (10). Then J (x̂) is a χ2 random variable with m

degrees of freedom if the elements of b and x are normally distributed.

Corollary 3 follows from the fact that Jobs(x̂obs) and J (x̂) can be written in quadratic form and
hence follow a generalized χ2 distribution [7]. Lastly, it was shown that the results in Theorem 2
and Corollary 3 still hold for non-normally distributed x and b in [21], as stated in the following
Corollary.

Corollary 4. If the number of data m is large and the same assumptions hold as in Theorem 2,
then the asymptotic distributions of Jobs(x), Jobs(x̂obs), J (x) and J (x̂) are still χ2 with m, m−n,
m+ n and m degrees of freedom, respectively, regardless of the distribution of b and x.

Part A of Corollary 3 states that if the number of data is equal to the number of unknowns,
we expect that Jobs(x̂obs) ≈ m − n = 0, while the discrepancy principle has Jobs(x̂α) ≈ m. Even
though x̂obs and x̂α are not equivalent, the degrees of freedom in Jobs(x̂α) still must be reduced by
the number of parameters since the data were used to find x̂α. The degrees of freedom must be
reduced when the parameter estimates are found with the data because the terms in the χ2 sum are
no longer independent [10].

Similar to the discrepancy principle, the χ2 method uses the fact that the expected value of a
least squares functional is the number of degrees of freedom in the corresponding χ2 random variable,
but now condition (11) is replaced with the regularized residual i.e.

||b̃− Ãx̂||22 + ||C−1/2f (x̂− x0)||22 ≈ m. (12)
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This condition is consistent with Part B of Corollary 3. Algorithms for the χ2 method when Cf = σ2
fI

and Cε = σ2
ε I are given in [22, 31], and we refer to this case as the scalar χ2 method. This is Tikohonv

regularization [39] and it was shown that the scalar χ2 method is an attractive alternative to the
L-curve [13], Generalized Cross Validation (GCV) [43] and Unbiased Predictive Risk Estimation
(UPRE).

3.2. χ2 Method for diagonal matrix weights

The scalar χ2 method is based on solving the single equation (12) for the regularization parameter
α = σ−2f (Cf = σ2

fI) or to estimate the standard deviation in the data error σε (Cε = σ2
ε I). Since

the methodology to compute Cε or Cf is the same, we will use the more general notation C and
σ to represent Cf or Cε, and σf or σε, respectively. To estimate more dense matrices C, we now
specify a system of N equations from which we can solve for C = diag(σ1, . . . , σN ). The system
represents multiple χ2 tests and based on the following theorem.

Theorem 5. Let P = ACfA
T + Cε, r = Ax0 − b, and k = P−1/2r so that J (x̂) = rTP−1r =

k21 + . . . k2m. If ε and f are independent and identically normally distributed with covariance matrices

Cε and Cf , respectively, then k2pi−1+1 + . . . + k2pi+pi−1
, with p0 = 0 and

∑N
i=1 pi = m, N ≤ m,

follows a χ2 distribution with pi degrees of freedom for i = 1, . . . , N .

Proof. Since Cf and Cε are covariance matrices, P is symmetric positive definite and we can
define k = P−1/2r. It was shown in [21] that J (x̂) = rTP−1r = k21 + . . . k2m. When data errors
are normally distributed, each ki is also normally distributed since it is the linear combination of m
normal variables. Hence each k2i follows a χ2 distribution with 1 degree of freedom. Since there are
m elements in k, we can form N ≤ m different sums, and each sum will have pi degrees of freedom,
where pi is the number of terms in the sum.

We write the series of sums of squares in Theorem 5 as an N dimensional linear system

k21 + . . .+ k2p1 = p1, (13)

k2p1+1 + . . .+ k2p2+p1 = p2, (14)

... (15)

k2pN−1+1 + . . .+ k2pN+pN−1
= pN . (16)

This gives us N equations from which we can solve for N unknowns in the weighting matrix C−1

(i.e. either C−1f or C−1ε in (10)). This system (13)-(16) is coupled because each ki is a function of
σ = (σ1, . . . , σN ), and we will denote it by F(σ) = 0. We note that N does not necessarily equal
the number of parameters n or data m. When it does, each data or initial parameter misfit has
different weight.

Corollary 6. As the number of data increases, i.e. m→∞, Theorem 5 still holds as a limiting χ2

distribution.

Proof. It is important to note that as we take fewer sum of squares of ki, we do not violate the
fact that the distribution of each ki are approximately normal when m is large, regardless of the
distribution of data errors. This can be seen by noting that if data errors are not normal, each ki is
the linear combination of m random errors ri, i.e.

ki =

m∑
j=1

P
−1/2
ij rj = P

−1/2
i1 r1 + . . .+ P

−1/2
im rm, i = 1, . . . ,m. (17)

The Central Limit Theorem [10] states that each ki, i = 1, . . . ,m, will have a distribution that tends
to the normal distribution as m increases regardless of the probability distribution of ri. Thus when
the number of data m is large, we can assume that each ki is normally distributed.
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3.3. Benchmark discontinuous problem

Errors in data or initial parameter estimates can be grouped to give C block diagonal structure.
As an example, we solved the discontinuous wing test problem from [15] with m = n = 96, and
considered C = Cf with three diagonal blocks. The wing test problem is a one-dimensional inverse
problem with a discontinuous solution arising from the discretization of a Fredholm integral equation
of the first kind [45]. The goal is to find f(s) given the Kernel K(t, s) and data d(t):

d(t) =

∫ b

a

K(t, s)f(s)ds.

Small errors in data d are greatly amplified in the solution f , thus the problem is ill-posed and
it’s discretization results in an ill-conditioned linear system of equations. The accuracy of the one
dimensional results from wing are viewed by creating a “true” or mean solution x, artificially adding
noise ε to data created by it, and then comparing the computed estimate x̂ to x.

In Figure 3 the noisy data from which the estimate was obtained is plotted on the left, and the
estimated parameters along with the mean or true solution are plotted on the right. The noise in
the data were taken from a normal distribution, while the initial parameter estimate was taken to
be zero. The ‘o’ curve is the estimate when Cf = σfI while the ‘+’ curve is the estimate with
Cf = diag(σ1, . . . , σ1, σ2, . . . , σ2, σ3, . . . , σ3). Since there are two discontinuities we chose N = 3
with pi = 96/3, i = 1, 2, 3, so that Cf has three diagonal blocks. We see that the estimate with
the matrix weight captures the discontinuity in the true solution at 33 and 65, while the scalar
weight smoothes the estimate at those points. In addition, since the χ2 tests apply to non-normally
distributed data, we illustrate the estimate when the data are from an exponential distribution in
Figure 4. We see there that the discontinuity is again captured when the parameter misfit is weighted
with a matrix with three diagonal blocks.
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Figure 3: Benchmark problem wing [15] with discontinuous solution and normally distributed data.

The roots of F(σ) with F,σ ∈ RN given by (13)-(16) were found in Matlab using sqrtm to
calculate P1/2 and fsolve to solve the nonlinear system. Since P is symmetric positive definite
there is a unique positive square root. The Matlab function sqrtm(P) calculates this from the
Schur deomposition P = QDQT so that P1/2 = QD1/2QT [17]. The Matlab function fsolve in the
Optimization Toolbox uses nonlinear least squares methods based on reflective newton methods [8].
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Figure 4: Benchmark problem wing [15] with discontinuous solution and exponentially distributed
data.

3.4. Variable χ2 method

The algorithm using fsolve and sqrtm does not always converge. In addition, the results obtained
in Figures 3-4 occured with knowledge of the location of the discontinuities in the solution. When
the location of discontinuities or large variations in the solution are not known, we developed the
variable χ2 method to determine the number of χ2 tests needed in a given region. The procedure
begins with one χ2 test (12) and if it is not satisfied within a given tolerance, the problem is split
in two and F(σ) = 0 is solved with N = 2. This process continues and the number of χ2 principles
in regions where an estimate cannot be found is doubled while the estimate is held fixed in regions
where the nonlinear system is satisfied. For example, in (13)-(16) when we cannot find σ such that
k2p1+1+ . . .+k2p2+p1 = p2, but we can satisfy all other equations, we change the N dimensional system
to the following system of N+1 equations:

k21 + . . .+ k2p1 = p1, (18)

k2p1+1 + . . .+ k2p2/2+p1 = p2/2, (19)

k2p2/2+1 + . . .+ k2p2+p2/2 = p2/2, (20)

k2p2+1 + . . .+ k2p3+p2 = p3, (21)

... (22)

k2pi+1 + . . .+ k2pN+pi = pN . (23)

Results from the variable χ2 method with wing test problem are shown in Figure 5. The data
in this example were from a normal distribution, and are more noisy than those in Figure 3. The
tolerance was set at χ2 < 1, but it was not met on all intervals. The iteration procedure was stopped
in two places, after 10 and 14 χ2 tests. The resulting vector p formed by the right hand side of the
system (18)-(23) was p = [16 8 8 32 16 8 1 1 2 4] and p = [16 4 2 2 4 2 2 32 16 4 4 2 2 4], respectively.
We can see that as the number of χ2 tests increased, the first discontinuity in the solution is better
resolved, but the estimate at the second discontinuity is worse. It is not clear from these results that
adding more χ2 tests would resolve the discontinuity better.
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Figure 5: Benchmark problem wing [15] with normally distributed data (a). Estimate with 10 χ2

tests p = [16 8 8 32 16 8 1 1 2 4] (b), and 14 χ2 tests p = [16 4 2 2 4 2 2 32 16 4 4 2 2 4].
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Even though the estimate x̂ is not calculated during the iteration process, the solution of the
nonlinear system which defines the χ2 tests is very expensive and does not always converge. Future
work involves finding more efficient, reliable methods for solutions of the system, and more robust
methods for determining the appropriate number of terms in each χ2 test. We now turn to an
application, and we will see that, as is the case with many applications, there is some a priori
knowledge of where to break up the χ2 tests.

4. Soil hydraulic properties

In 1980 van Genuchten [40] introduced the widely used empirical equation for a continuous
representation of soil moisture θ as a function of pressure head ψ:

θ(ψ) = θr +
(θs − θr)

(1 + |αψ|n)
m h < 0. (24)

This equation, coupled with Mualem’s representation [27] of hydraulic condicuivity, and Richards’
equation [30] for unsaturated flow gives soil moisture estimates over time, and larger spatial scales
than are given by point-scale measurements. However, since the parameters in van Genuchten’s
equation are determined at the point scale, it is not clear over what scales they can be used in
Richards’ equation [25]. The goal here is to find relevant parameters that can be used in a multiscale
approach to Richards equation, such as [16], so that we can capture large-scale behavior without
resolving the small-scale details.

The van Genuchten equation (24) contains five independent parameters: θr and θs are the
residual and saturated water contents (cm3cm−3), respectively, while α (cm−1), n and m (-), with
m commonly set to 1 − 1/n, are empirical fitting parameters. The parameters were estimated by
inverting measurements of soil moisture θ as a function of pressure head ψ from both field and
laboratory measurements of soil in the Dry Creek catchment near Boise, Idaho [20]. Direct field
measurements of soil moisture content and pressure head are made at soil pits, and in addition,
soil cores were taken to the laboratory. In the laboratory, the cores were analyzed by measuring
percentages of sand, silt , and clay and bulk density of the soils. These measurements were used
as inputs into Rosetta [36], a public domain code from the USDA Agricultural Research Service.
Figure 6 contains plots of the field measurements and the laboratory curve generated by Rosetta at
four different pits: SD5 15, NU10 15, SU10 20, and SU10 40, representing North or South facing
slopes, up or down stream from a weir 5 or 10 cm, and at depths of 15, 20 or 40 cm.

In Figure 6 we see that the field measurements and Rosetta estimates of soil moisture as a
function of pressure head are not in agreement. This is because Rosetta is based on neural network
analyses of a wide range of soil types consisting of 2134 soil samples, of which the gravel content is
not documented. However, the soil samples from the Dry Creek Watershed had appreciable gravel
contents. In [12] they normalized the curve, but here we used the curve from Rosetta within the
uncertainty ranges given by the software, and indicated by horizontal bars in the plots. Figure
6 also contains results from the χ2 method. The χ2 curve is the fit of the field and laboratory
measurements, within the uncertainty ranges given by Rosetta, and that pass the single χ2 test.
This means that unlike regularization, here Cf is given by Rosetta, and we use the χ2 method to
find Cε, the uncertainty in the data error.

4.1. Spatial variability and uncertainty quantification

It is difficult to define parameter sets over multiple scales because parameters vary due to spatial
variability or heterogeneity of soil properties. Accounting for these variations in soil, and upscaling
the parameters, has been addressed in a variety of ways, see for example [44] and [37]. However,
if one parameter set is to be used over a large spatial scale, “effective parameters” are calculated
which simulate field-scale behavior with a single soil hydraulic characteristic, see for example [37]
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Figure 6: Soil water retention curves, θ(ψ), observed in the field, in the laboratory (Rosetta) and
that found with χ2 method.
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NU10 15 SU10 20 SU10 40 SD5 15

0.005 (2.6%) 0.011 (6.4%) 0.044 (23.1%) 0.011 (6.4%)

Table 1: Single pit uncertainties calculated with the χ2 method, and their percentage across all
measurements.

Depth North/South slopes Up/downstream
SU10 20 & SU10 40 SU10 20 & NU10 15 SU10 20 & SD 5 15

χ2 method 0.048 (22.5%) 0.014 (7.7%) 0.031 (14.5%)
Std. Dev. 0.017 (8.0%) 0.010 (5.2%) 0.011 (5.1%)

Table 2: Multiple pit uncertainties calculated with the χ2 method, the standard deviation of all
measurements, and the corresponding percentage each uncertainty is across all measurements.

and [46]. In this work we calculate effective parameters using the χ2 method. The spatial variability
in the parameter estimates is treated as uncertainty in data measurements and quantified with Cε.
This differs from previous approaches where the interest is in selecting specific parameters that
reduce uncertainty in predictions [38]. In our approach, we vary the scale, calculate the data error
uncertainty with the χ2 method, and use that uncertainty estimate σε to determine over what scales
one parameter set should be used. These uncertainty estimates can also be used to identify sets
of measurements that contain the most information for parameters identification, as in the PIMLI
methodology [42].

4.2. Soil moisture results

4.2.1. Spatial variability

Data error uncertainty, Cε, is typically attributed to measurement error but here we assume that
it also includes uncertainty due to heterogeneties or spatial variability, and approximate it with the
χ2 method. The spatial variability of measurements, and curves resulting from parameter estimates,
are illustrated in Figure 7. Starting clockwise from top left we combine measurements at two pits
on North and South facing slopes, two pits up and downstream from the weir, two pits at different
depths, and lastly we combine measurements from all four pits. The Rosetta curve is averaged over
multiple pits while the χ2 curve combines averaged data with averaged parameters and uncertainties
from Rosetta. These curves do not look that different from each other, so the values of σε are given
in Tables 1-2.

Table 1 gives the uncertainty σε found by the scalar χ2 method, so that the combination of
field measurements and Rosetta estimates pass the single χ2 test. The corresponding number in
parentheses represents the percentage this value is across all measurements, i.e σε/(max θ −min θ).
Table 2 gives similar σε calculated by the χ2 method, but for the measurements averaged across pits,
as illustrated in Figure 7. Similar to Table 1, in parentheses we give the standard deviation as the
average across all field measurements, but now across multiple pits. The values in these tables most
likely underestimate the true uncertainties [34], however, their change in magnitude as we combine
pits can be used to understand the effect of using point measurements across scales.

In Table 1 we see that the largest uncertainty comes from the pit at 40cm depth and it is 23.1% of
the soil moisture measurements made across all pressure heads measurements at this pit. This is very
high, but is typical of measurements in the sub-surface. The values in Table 1 are used as a baseline
for determining the scales over which one parameter set can be used. The uncertainties typically
increase as we combine data sets from multiple pits, as seen in Table 2. When the uncertainty
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Figure 7: Soil water retention curves for multiple pits, θ(ψ), observed in the field, in the laboratory
(Rosetta) and found with χ2 method.
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calculated with the χ2 method is significantly higher with multiple pits than from a single pit, this
indicates that a single parameter set should not be used for that particular pit combination.

In the first column of Table 2 we see that the χ2 uncertainty after combining pits at depth is
roughly the same percentage as that from the single pit at 40 cm depth in Table 1. This shows
that the high uncertainty at depth 40 cm dominates the uncertainty at 20 cm depth, and hence
different parameter sets should be used at these depths. In addition, we see that this uncertainty
is significantly higher than the standard deviation of the measurements of both pits, which is 8%.
The conclusion that we need to use different parameter sets at different depths is consistent with
the flow modeling in [12], where they also found that they needed to use two different parameter
sets.

Alternatively, when we combined measurements from the north and south facing slopes in column
2 of Table 2, we see that the χ2 uncertainty does not change that much from the single pit uncertainty
percentage in columns 1 and 2 of Table 1. This implies that we can use the same parameter set for
north and south facing slopes. This is a surprising result since measurements on north and south
facing slopes are often different in this region due to the high elevation and significant sunshine.
However, we note that these parameters represent soil type, not moisture content, so χ2 results
indicate that the soils are of the same type on different the slopes.

The last column in Table 2 contains results from combining measurements from pits up and
downstream from a weir. The uncertainty did increase from those calculated at single pits in columns
3 and 4 of Table 1. This implies that we may want to use different parameters upstream than down.
This is another reasonable conclusion because it indicates that the soil type changes along the stream.
The hypotheses that the same parameter set can be used on North and South facing slopes, but
should not be used at different depths nor at locations 15 cm downstream is logical, and we have
quantified their validity with the χ2 method.

Lastly, we point out the difference between the uncertainty found by the χ2 method and the
standard deviation of measurements across multiple pits. When measurements from the North and
South slopes are combined the uncertainties are of the same magnitude. However, when measure-
ments up and downstream from the weir are combined the uncertainty calculated by the χ2 method
is significantly higher than the standard deviation of the measurements. This implies that just
using the standard deviation of measurements when combining pits may underestimate the true
uncertainty, and not be a good indication of when to use different parameter sets.

4.2.2. Uncertainty across pressure head measurements

We also show results from the χ2 method with diagonal, rather than scalar weighting. This
illustrates how a priori knowledge can be used to determine where to break up the χ2 tests in
(13)-(16). Scalar weighting Cε = σ2

ε I in Section 4.2.1 implies that uncertainty in soil moisture
measurements is constant across all pressure head measurements. This is a poor physical assumption
since the pressure head measurements are made independent of soil moisture measurements. There
are thousands of measurements at these pits, thus the number of χ2 tests will be significantly less
than the number of data, and Cε will be block diagonal. The dimension of each block represents
the data grouping, and we determine the grouping by plotting data from the single pit SU10 40 on
a regular rather than log scale in Figure 8. Figure 8(a) shows the grouping with two χ2 tests, i.e.
N = 2 in (13)-(16) and roughly breaks up the data evenly at 250 cm. In Figure 8(b) the data were
split evenly in three at 80cm and 275cm. This process was continued in Figures 8(c)-(e) to evenly
split the data in 4, 5, and 10 groups. In each of the plots we give a representative σεi to illustrate
the region where σεi is assumed constant.

The σεi , i = 1, . . . , N , were found with the χ2 method and the corresponding curves with N =
2, 3, 4, 5, and 10 are plotted in Figure 9. This is for the single pit SU10 40 with the data groupings
defined in Figures 8(a)-(e). There we see that the estimates do not vary that greatly as we change
the number of χ2 test. This indicates that the scalar χ2 method is sufficient for producing parameter
estimates. However, we continue to investigate the effectiveness of diagonal weighting in Table 3.
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One χ2 test Two χ2 tests Three χ2 tests Four χ2 tests Five χ2 tests Ten χ2 tests
σε1 0.0440 (23.1%) 0.0535 (28.1%) 0.0523 (27.4%) 0.0522 (27.4%) 0.0521(27.3%) 0.0542 (28.5%)
σε2 0.0287 (15.1%) 0.0382 (20.0%) 0.0500 (26.2%) 0.0506 (26.6%) 0.0501 (26.3%)
σε3 0.0212 (11.1%) 0.0261 (13.7%) 0.0462 (24.23%) 0.0521 (27.3%)
σε4 0.0248 (13.0%) 0.0125 (6.5%) 0.0482 (25.3%)
σε5 0.0290 (15.2%) 0.0531 (27.9%)
σε6 0.0400 (21.0%)
σε7 0.0162 (8.5%)
σε8 0.0067 (3.5%)
σε9 0.0244 (12.8%)
σε10 0.0355 (18.6%)

Table 3: Uncertainty estimates for SU10 40 found by χ2 method with diagonal weighting matrices.

In Table 3 the uncertainty estimates σεi , with Cε = diag(σε1 , . . . , σε1 , σε2 , . . . , σε2 , σεN , . . . , σεN ),
N = 2, 3, 4, 5, 10 are given. With two χ2 tests we see that the largest estimates of uncertainty are
in measurements at pressure heads with large magnitude, i.e above 250 cm. This is due to the fact
that the same soil moisture content was observed at near similar pressure head measurements. With
three χ2 tests the largest uncertainty is at pressure head measurements above 80 cm, and with four
χ2 tests there is significant uncertainty between 60 cm and 250 cm but the majority is above 250
cm. As the number of χ2 tests increases to 10 we see that the calculated uncertainty is largest
above 250 cm and below 50 cm. Large uncertainty at low pressure head measurements is due to
the fact that in this semi-arid climate, soils do not get fully saturated and there are not many soil
moisture measurements at this level. These conclusions can be made by observing the data set,
they are validated using χ2 tests, and quantified with the χ2 method. We conclude that the single
uncertainty estimate across all pressure heads, 0.0440, is a reasonable estimate from which to infer
parameters at soil pit SU10 40.

5. Summary and Conclusions

We have developed the χ2 method to calculate diagonal weighting matrices for weighted least
squares estimation. This is an extension of the scalar χ2 method [21, 22, 23, 31] which can be
viewed as a regularization method. The new method amounts to solving multiple χ2 tests to give an
equal number of equations as the number of unknowns in the diagonal weighting matrix for data or
parameter misfits. The unknowns in the diagonal weighting matrcies are solved for using fsolve and
sqrtm in Matlab. Future work involves efficient and reliable implementation of the solution of this
nonlinear system of equations (13)-(16), and investigation of the appropriate number of χ2 tests. We
have shown here that these diagonal weighting matrices can give discontinuous parameter estimates
with a least squares estimator on a benchmark inverse problem.

We applied both scalar and diagonal weighting matrices found by the χ2 method to estimate
the water content in soils in a watershed near Boise, Idaho. The χ2 method was used to quantify
uncertainty in point scale field measurements so that the resulting parameter estimates can be used
on the watershed scale. The measurement uncertainties calculated by the χ2 method incorporate
spatial variability, define scales over which one parameter set can be used, and indicate areas where
measurement uncertainty needs to be reduced.
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Figure 8: Intervals for multiple χ2 tests (13)-(16) (a) N = 2 (b) N = 3 (c) N = 4 (d) N = 5 (e)
N = 10.
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