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Parameter estimation: A new approach to weighting a
priori information
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Abstract. We propose a new approach to weighting initial parameter misfits in a least squares opti-
mization problem for linear parameter estimation. Parameter misfit weights are found by solving an
optimization problem which ensures the penalty function has the properties of aχ2 random variable
with n degrees of freedom, wheren is the number of data. This approach differs from others in
that weights found by the proposed algorithm vary along a diagonal matrix rather than remain con-
stant. In addition, it is assumed that data and parameters are random, but not necessarily normally
distributed.

The proposed algorithm successfully solved three benchmark problems, one with discontinuous
solutions. Solutions from a more idealized discontinuous problem show that the algorithm can suc-
cessfully weight initial parameter misfits even though the two-norm typically smoothes solutions.
For all test problems sample solutions show that results from the proposed algorithm can be better
than those found using the L-curve and generalized cross-validation. In the cases where the param-
eter estimates are not as accurate, their corresponding standard deviations or error bounds correctly
identify their uncertainty.

Key words. Parameter estimation, Tikhonov regularization, Maximum likelihood estimate, Non-
necessarily Gaussian noise .
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1. Introduction

Parameter estimation is an element of inverse modeling in which measurements or
data are used to infer parameters in a mathematical model. Parameter estimation is
necessary in many applications such as biology, astronomy, engineering, Earth science,
finance, and medical and geophysical imaging. Inversion techniquesfor parameter
estimation are often classified in two groups: deterministic or stochastic.

Both deterministic and stochastic approaches must incorporate the fact that there are
uncertainties or errors associated with parameter estimation [3], [13]. For example, in
a deterministic approach such Tikhonov regularization [17] or stochasticapproaches
which use frequentist or Bayesian probability theory, it is assumed that data contain
noise. The difference between deterministic and stochastic approachesis that in the
former it is assumed there exists “true” parameter values for a given set of data while
in the latter the data, parameter values or both are random variables. [14].

Parameter estimation can be viewed as an optimization problem in which an ob-
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jective function representing data misfit is minimized in a given norm, [11]. From
a deterministic point of view the two-norm, i.e. a quadratic objective function, is the
most attractive mathematically because the minimum can be explicitly written in closed
form. From the stochastic point of view this choice of two-norm is statistically the most
likely solution if data are normally distributed. However, this estimate is typically less
accurate if the data are not normally distributed or there are outliers in the data [16].

A more complete optimization problem will include a statement about the parameter
misfit, in addition to the data misfit. This statement could be a deterministic bound such
as a positivity constraint on the parameters, or a regularization term whichensures that
the first or second derivative of the parameters is smooth.

When parameter misfits are included in stochastic approaches their corresponding a
priori probability distributions must be specified. The advantage and disadvantage of
the stochastic viewpoint is that prior information about the probability distribution of
data or parameters must be specified. A priori information for the distribution of data
is tractable because data can (theoretically) be collected repeatedly in order to obtain a
sample from which one can infer its probability distribution. A priori inference of the
parameter probability distribution is less reliable than that for the data because it must
rely on information from the uncertain data [13].

Which ever way one views the problem; positivity constraints, regularization, or
probability distributions, typically a weighted objective function is minimized. A sig-
nificant difference between methods and their solutions lies in how the weights are
chosen.

An experimental study in [15] compares deterministic and stochastic approaches to
seismic inversion for characterization of a thin-bed reservoir. Their conclusion is that
deterministic approaches are computationally cheaper but results are only good enough
for identifying general trends and large features. They state that stochastic inversion
is more advantageous because results have superior resolution and offer uncertainty
estimates.

The experimental results in [15] which suggest that the stochastic approach is more
accurate than the deterministic approach may occur because the stochastic approach
better weights the data and parameter misfits. Most deterministic approaches such as
positivity constraints or regularization only use constant or simple weights on the pa-
rameter misfits. On the other hand, stochastic approaches which specifyprior normal
or exponential probability distributions weight the parameter misfit with an inverse co-
variance matrix. Weighting with accurate non-constant, dense matrices is desirable but
it implies that there is good a priori information. How do we obtain this information,
i.e how do we find accurate weights on the data and parameter misfits?

In this work we use the following piece of a priori information to better weightthe
parameter misfit: The minimum value of a quadratic cost function representing the data
and parameter misfit is aχ2 random variable withn degrees of freedom, wheren is the
number of data. For largen, this is true regardless of the prior distributions of the data
or parameters.

For the linear problem, an explicit expression for the minimum value of the cost
function is given as a function of the weight on the parameter misfit. Since the cost
function follows aχ2 distribution, this minimum value has known mean and variance.



A new approach to weighting a priori information 3

To calculate a weight on the parameter misfit a new optimization problem is solved
which ensures the minimum of the cost function lies within the expected range.

In Section 2 we describe current approaches to solving linear discrete ill-posed prob-
lems. In Section 3 we describe the new approach and the correspondingalgorithm, in
Section 4 we show some numerical results, and in Section 5 we give conclusions and
future work.

2. Linear Discrete Ill-posed Problems

In this work discrete ill-posed inverse problems of the form

d = Gm (2.1)

are considered. Hered is a n dimensional vector containing measured data,G is a
forward modeling operator written as ann × m matrix andm is am dimensional
vector of unknown parameter values.

2.1. Deterministic approaches

Frequently it is the case that there is no value ofm that satisfies (2.1) exactly. Simple
and useful approximations may be found by optimizing

min
m

||d − Gm||pp. (2.2)

The most common choices forp arep = 1,2. If p = 2, this is least squares optimization
which is the simplest approach to analyze and statistically results in the most likely
solution if the data are normally distributed. However, the least squares solution is
typically not accurate if one datum is far from the trend.

If p = 1 accurate solutions can still be found if there are a few data far from the
trend. In addition, it is statistically the most likely solution if the data are exponentially
distributed. Asp increases from 2 the largest element ofd−Gm is given successively
larger weight [11].

Least squares solutions are the simplest to analyze mathematically because the value
at which the minimum occurs can be stated explicitly. In other words,

min
m

||d − Gm||22 = min
m

(d− Gm)T (d− Gm) (2.3)

has a unique minimum occurring at

m̂ls = (GT
G)−1

G
T
d. (2.4)

However, the inverse solution is not that simple because typicallyG
T
G is not in-

vertible and the problem must be constrained or regularized. One common way to do
this is Tikhonov regularization in the two-norm wherem is found by solving

min
m

{

||d− Gm||22 + λ||L(m − m0)||22
}

(2.5)
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with m0 an initial parameter estimate (often taken to be 0),λ a yet to be determined
regularization parameter, andL a smoothing operator possibly chosen to represent the
first or second derivative.

The optimization problem (2.5) can be written equivalently as a constrainedmini-
mization problem:

min
m

||d− Gm||2 subject to ||L(m − m0)||2 ≤ δ. (2.6)

In either formulation, (2.5) or (2.6), the optimization problem can be written as

min
m

{

(d− Gm)T (d− Gm) + (m− m0)
TλLT

L(m − m0)
}

. (2.7)

When the optimization problem is written this way we see that the objective function is
the sum of a data and parameter misfit. The function is normalized so that thedata mis-
fit has weight equal to one while the parameter misfit has weightλLT

L. ThusλLT
L

represents an a priori ratio of weights on the data and parameter misfits. Typically,
L is taken to be the identity, first or second derivative operator. There are numerous
approaches for choosingλ including the L-curve [8], Morozov’s discrepancy principle
[12] and generalized cross-validation [9].

The minimum of (2.7) occurs at

m̂rls = m0 + (GT
G + λLT

L)−1
G

T (d− Gm0). (2.8)

This deterministic parameter estimate, (2.8), from Tikhonov regularization does not
use a priori knowledge, other than specification of the form ofL.

2.2. Stochastic approaches

Some stochastic formulations can lead to an optimization problem similar to (2.5). The
difference between these stochastic approaches and the corresponding deterministic
ones is the way in which the weights on the data and parameter misfits are chosen.
For example, assume the datad are random, independent and identically distributed,
following a normal distribution with probability density function

ρ(d) = const× exp
{

−1
2
(d− Gm)T

C
−1
d (d− Gm)

}

, (2.9)

with Gm the expected value ofd andCd the corresponding covariance matrix. In
order to maximize the probability that the data were in fact observed we findm where
the probability density is maximum. This is the maximum likelihood estimate and it
is the minimum of the argument in (2.9), i.e. the optimal parametersm are found by
solving

min
m

(d− Gm)T
C
−1
d (d− Gm). (2.10)

This is the weighted least squares problem and the minimum occurs at

m̂wls = (GT
C
−1
d G)−1

G
T
C
−1
d d. (2.11)
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Similar to (2.4),GT
C
−1
d G is typically not invertible. In this case the stochastic

problem can be constrained or regularized by adding more a priori information. For
example, assume the parameter valuesm are also random following a normal distribu-
tion with probability density function

ρ(m) = const× exp
{

−1
2
(m − m0)

T
C
−1
m (m− m0)

}

, (2.12)

with m0 the expected value ofm andCm the corresponding covariance matrix. If the
data and parameters are independent then their joint distribution is

ρ(d,m) = ρ(d)ρ(m).

The maximum likelihood estimate of the parameters occurs when the joint probability
density function is maximum, i.e. optimal parameter values are found by solving

min
m

{

(d− Gm)T
C
−1
d (d− Gm) + (m− m0)

T
C
−1
m (m − m0)

}

. (2.13)

The minimum occurs at

m̂ = m0 + (GT
C
−1
d G + C

−1
m )−1

G
T
C
−1
d (d− Gm0). (2.14)

The stochastic parameter estimate (2.14) has been found under the assumption that
the data and parameters follow a normal distribution and are independentand identi-
cally distributed.

2.3. Comparison between Deterministic and Stochastic approaches

Now we are in a situation to point out similarities between Tikhonov regularization
in the two-norm and a stochastic approach for normally distributed data andparame-
ters. The two equations (2.8) and (2.14) are equivalent ifC

−1
d = I andC

−1
m = λLT

L.
Even though the two-norm smoothes parameter estimates and assumes independent
and identically distributed parameters, following normal probability distributions, we
can see under these simplifying assumptions how a stochastic approach would give bet-
ter results. In the stochastic approach dense a priori covariance matrices better weight
the the data and parameter misfits than when the weights areλLT

L with Tikhonov
regularization. This is the justification for the success of the proposed method.

As further explanation of the advantage of a stochastic approach over adeterministic
one consider the deterministic constraint

||m − m0|| < λ.

When this constraint is applied, each element ofm − m0 is equally weighted which
implies that the error in the initial guessm0 is the same for each element. Weighting in
this manner will not be the best approach if a large temperature change or other such
anomaly is sought. On the other hand, non-constant weights such as prior covariances
Cm may vary along a diagonal matrix and hence give different weight to each element
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of m − m0. The weights can be further improved if the prior is non-diagonal because
then correlation between initial estimate errors can be identified.

Regardless of the norm in which the objective function is minimized or how the
problem is formulated, the over-riding question is: How should weights on the terms
in the objective function be chosen? In Section 3 we will show that if a quadratic cost
function is used there is one more piece of a priori information that can beused to
find weights on parameter misfits. In Section 4 we will show that when using weights
chosen in this manner the parameter estimates are not smoothed and it need not be
assumed that the data or parameters are normally distributed.

3. New approach

Rather than choosing a deterministic approach which uses no a priori information or a
stochastic approach which may use incorrect a priori information we focus on finding
the best way to weight data and parameter misfits in the two-norm using available a
priori information.

Consider parameter estimation reformulated in the following manner. Given datad,
accurate mappingG and initial estimatem0, find m such that

d = Gm + ǫ (3.1)

m = m0 + f (3.2)

whereǫ andf are unknown errors in the data and initial parameter estimates, respec-
tively.

We can viewm andd as random variables or alternatively,m as the “true” parameter
estimate andd as data with error. In either case, parameter estimates are found by
minimizing the errors in the data (ǫ) and initial estimates (f ) in a weighted least squares
sense, i.e. solve the following optimization problem

min
m

{

(d− Gm)T
Wd(d− Gm) + (m− m0)

T
Wm(m− m0)

}

(3.3)

with Wd andWm weights (yet to be determined) on the error in the datad and initial
parameter estimatesm0, respectively.

3.1. Choice of weights

The weights on the data misfit will be taken to be the inverse of the covarianceof the
data, i.e.Wd = C

−1
d . If the statistical properties of the data are not known this weight

can be estimated by collecting the same data repeatedly and calculating the sample
standard deviation. We do assume however, that the data is good and thatGm is the
mean ofd.

To find the weights on the parameter misfit,Wm, we use the following Theorem.

Theorem 3.1. DefineJ (m) by

Jmls = (d− Gm)T
C
−1
d (d− Gm) + (m − m0)

T
C
−1
m (m− m0) (3.4)
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with d andm stochastic. In addition, assume the errors in the datad and initial guess
m0 are not necessarily normally distributed but have mean zero and covariancesCd

andCm, respectively. Then as the number of datan approaches infinity, the minimum
value of (3.4) is a random variable and its limiting distribution is theχ2 distribution
with n degrees of freedom.

Proof. Case 1: Elements ofd andm are independent and identically normally dis-
tributed. It is well known that under normality assumptions the first and second terms
in the right hand side of (3.4) areχ2 random variables withn −m andm degrees of
freedom, respectively.

Case 2: Elements ofd andm are independent and identically distributed but not
normally distributed. The minimum value ofJ (m) occurs at

m̂ = m0 + (GT
C
−1
d G + C

−1
m )−1

G
T
C
−1
d (d− Gm0). (3.5)

Re-write the matrix in (3.5) by noting that

G
T
C
−1
d GCmG + G

T = G
T
C
−1
d

(

GCmG
T + Cd

)

=
(

G
T
C
−1
d G + C

−1
m

)

CmG
T ,

thus
(

G
T
C
−1
d G + C

−1
m

)

−1
G

T
C
−1
d = CmG

T
(

GCmG
T + Cd

)

−1
. (3.6)

Let h = d− Gm0 andP = GCmG
T + Cd, then

m̂ = m0 + CmG
T
P
−1

h. (3.7)

The minimum value ofJ (m) is

J (m̂) =
(

h − GCmG
T
P
−1)T

C
−1
d

(

h − GCmG
T
P
−1) (3.8)

+
(

CmG
T
P
−1

h
)T

C
−1
m

(

CmG
T
P
−1

h
)

.

SinceCd andCm are covariance matrices, they are symmetric positive definite, and
we can simplify (3.8) to:

J (m̂) = h
T
P
−1

h. (3.9)

In addition, sinceG is full rank,P−1 and henceP are symmetric positive definite and
we can define

h = P
1
2 k, (3.10)

where

kj =
n

∑

i=1

(P−
1
2 )jihi. (3.11)
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If the errors in the datad and initial guessm0 are normally distributed thenhj are
normal and hencekj are normal by linearity. On the other hand, if the errors in the data
d and initial guessm0 are not normally distributed, then the central limit states that as
n approaches infinity,kj defined by (3.11) is a normally distributed random variable
with zero mean and unit variance.

Now writing (3.9) in terms ofk we have

J (m̂) = k
T
P

1
2 P
−1

P
1
2 k (3.12)

= k
T
k (3.13)

= k2
1 + . . . k2

n. (3.14)

For largen thekj are normally distributed random variables ir-regardless of the distri-
bution of the errors ind andm0 . Thus asn approaches infinity,J (m̂) is aχ2 random
variable withn degrees of freedom. This is described more generally in [1]. 2

We have shown that the objective function in (3.3) is aχ2 random variable with
n degrees of freedom regardless of the prior distributions of the data andparameter
misfits. Thus the weights on the parameter misfits will be found via an optimization
problem which ensures that the objective function in (3.3) lies within a critical region
of theχ2 distribution withn degrees of freedom.

4. Algorithm

We can determine, within specified confidence intervals, values ofWm = C
−1
m in (3.3)

that ensureJ (m̂) given by (3.8) is aχ2 random variable withn degrees of freedom
when there is a large amount of data. The larger the confidence interval,the bigger the
set of possible values ofWm. These values ofWm will be for a specified covariance
matrix for the errors in the dataCd, and for a specified initial guessm0. Thus for each
matrixWm there is an optimal parameter value ˆm uniquely defined by (3.7).

If Wm = λ−1
I then this algorithm is similar to approaches such as the L-curve

for finding the regularization parameterλ in Tikhonov regularization. However, the
advantage of this new approach is whenWm is not a constant matrix and hence the
weights on the parameter misfits vary. Moreover, whenWm has off diagonal elements,
correlation in initial parameter estimate errors can be modeled.

One advantage to viewing optimization stochastically is that once the optimal pa-
rameter estimate is found, the corresponding uncertainty or covariancematrix form̂ is
given by [16]

cov(m̂) = W
−1
m − W

−1
m G

T
P
−1

GW
−1
m , (4.1)

with P = GW
−1
m G

T + Cd. In Section 5 the numerical estimates of ˆm are plotted
with error bars which represent standard deviations of these estimates.These standard
deviations are the square root of the diagonal elements of (4.1).
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4.1. Confidence Intervals

For largen J (m̂) has meann and variance
√

2n. The(1 − α)% confidence interval
for the mean is

P
(

−zα/2 < (J (m̂) − n) /
√

2< zα/2

)

= 1− α, (4.2)

or

P
(

n−
√

2zα/2 < J (m̂) < n+
√

2zα/2

)

= 1− α, (4.3)

wherezα/2 is thez-value on the normal curve above which we find an area ofα/2.
Thus for a given (1− α) confidence interval we find values ofW

−1
m that ensure

n−
√

2zα/2 < J (m̂) < n+
√

2zα/2

or

n−
√

2zα/2 < h
T

(

GW
−1
m G

T + Cd

)

−1
h < n+

√
2zα/2. (4.4)

By choosing a value ofα = 0.05, for example, we are stating that we are 95%
confident that the mean ofJ (m̂) is n. In this case the interval in which the cost
function lies is[n− 2.77, n + 2.77], while forα = 0.10 it is [n− 3.64, n+ 3.64]. For
largen this is a small interval, thus in our experiments the optimization problem is to
find aWm such that

h
T

(

GW
−1
m G

T + Cd

)

−1
h = n. (4.5)

4.2. Optimization

There is actually a set of feasible solutionsWm that ensure (4.5) holds. This boundary
surface is well behaved as long asP is well-conditioned. The solution we seek is the
one in which||W−1

m || is minimized because this will most likely result in the strongest
“regularization” or well-conditioned matrix to invert in (2.14). The norm we choose is
the Frobenius norm, i.e.

||A||2F =
m

∑

i=1

n
∑

j=1

|aij |2,

because it is continuously differentiable and it is equivalent to the 2-normvia

1√
n
||A||F ≤ ||A||2 ≤ ||A||F .

If Wm is to represent the inverse covariance matrixCm it must be symmetric posi-
tive definite, thus we define

Cm = LL
T

with L lower triangular. We also assume thatG is full rank andn is large. However,
these assumptions may be dropped ifP is symmetric positive definite and the data are
normally distributed. The corresponding algorithm is given in Table 1 and results from
it are given in Section 5.
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Table 1. Algorithm for weights
Minimize ||LL

T ||2F
subject to n−

√
2zα/2 < h

T
(

GLL
T
G

T + Cd

)

−1
h < n+

√
2zα/2

GLL
T
G

T + Cd well conditioned

5. Numerical Tests

Matlab was used in all numerical tests, and the optimization problem in Table 1 was
solved using the functionfminconin the Optimization Toolbox. Future work involves
finding more efficient approaches to the optimization problem so that the proposed
methodology can be used for more realistic problems. For each test problem the inputs
vary, and they are: the datad, mappingG, initial parameter estimatem0 and data
misfit weight Wd = C

−1
d . In all cases, this weight is a diagonal matrix which is

the inverse of the data variances, i.e.diag(σd
i )2. More accurate representations of

the error covariance from sample data takes considerably more work,see for example
[7]. The outputs from the proposed method include the weights on the parameter misfit
Wm = LL

T calculated by the algorithm given in Table (1), parameter estimates (2.14),
and their corresponding uncertainties (4.1). In the first test, Section 5.1, the emphasis
is on showing how the calculated weights can properly identify a discontinuity,and
hence only the value of the weightsWm found by the algorithm in Table 1 are shown.
In the remaining tests, Section 5.2, the emphasis is on parameter estimation and the
corresponding uncertainties, thus the weights are not shown.

5.1. Discontinuous parameters in an idealized model

In the first test we sought to determine if a diagonalWm could be found which accu-
rately weights the error in the initial parameter misfit when the parameters are discon-
tinuous. The parameters values are(0, . . . ,0,1, . . . ,1,0, . . . ,0) with m = n = 70. The
matrix G is taken to be the identity so that initial parameter errors are known and the
accuracy of the weights are easy to identify. A more realistic test with a discontinuous
solution is given in Section 5.2.2.

Results from the algorithm are plotted in Figures 1 and 2 when the data and param-
eters are taken from normal and exponential distributions, respectively, with a standard
deviation of 5×10−2. The parameter misfitm−m0 is plotted along with the diagonal
entries ofW−1

m found by the proposed algorithm. Each of the four plots in Figures 1
and 2 represent differential initial estimates.

In three of the four plots, i.e. for(m0)i = 1,0,5 i = 1, . . . ,70, the diagonal elements
of W

−1
m found by the proposed algorithm do indeed jump between smaller and larger

values accurately reflecting the error in the initial parameter estimate(m − m0)i. In
the fourth plot the calculated(W−1

m )i still accurately weights the parameter misfit, but
in this case the misfit is constant at 0.5. Recall that a large diagonal element(W−1

m )ii

gives small weight to(m−m0)i, which is desired when(m−m0)i is large. That is, if
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Figure 1: Parameter misfits and their corresponding weights found with
the proposed algorithm in Table 1. Clockwise from top left:m0 =
(1, . . . ,1), (0, . . . ,0), (0.5, . . . ,0.5), (5, . . . ,5).
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Figure 2: Parameter misfits and their corresponding weights found with
the proposed algorithm in Table 1. Clockwise from top left:m0 =
(1, . . . ,1), (0, . . . ,0), (0.5, . . . ,0.5), (5, . . . ,5).
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we have a bad initial guess(m0)i, we don’t want to find a(m)i near it but instead give
small weight to minimizing(m−m0)i. The difficulty in weighting parameters misfits
in (3.3) is that typically we do not know the accuracy ofm0 a priori. However, in this
simple example, the weights found by the proposed algorithm do appropriately weight
the parameter misfits without a priori knowledge.

5.2. Benchmark Problems from [5]

Both analysis routines and test problems from [5] were used to compareand test
the algorithm in Table 1. Results from the proposed algorithm were compared to
those found from Tikhonov regularization with the L-curve, and and from general-
ized cross-validation. The L-curve approach plots the parameter misfit(with m0 = 0

and weighted byλLT
L) versus the data misfit (with weightI) to display the compro-

mise between minimizing these two quantities. When plotted in a log-log scale the
curve is typically in the shape of an L, and the solution is the parameter valuesat the
corner. These parameter values are optimal in the sense that the errorin the weighted
parameter misfit and data misfit are balanced. Generalized cross-validation is based on
the theory that if some data are left out, the resulting choice of parametersshould result
in accurate prediction of these data.

There are a total of 12 test problems in [5] and here we solve three of them: Phillips,
WingandShaw. They are all derived from approximating a Fredholm integral of the
first kind:

∫ b

a

K(s, t)f(t)dt= g(s). (5.1)

ThePhillips andWingproblems use Galerkin methods with particular basis functions
to approximate the Fredholm integral while theShawproblem uses a weighted sum
quadrature method. All approaches or problems lead to a system of linear algebraic
equationsGm = d however, in the Phillips and Wing test problemGm is different
from d.

Noise is added tod from normal or exponential distributions. The standard deviation
varies with each element ind, but is of the order of 10−2. The initial estimatem0 is
found similarly, i.e. by adding noise tom from normal or exponential distributions
with a varying standard deviation of the order of 10−2.

The weights on the data misfit and the initial estimatem0 are the same for all three
solution methods (L-curve, GCV and the algorithm in Table 1) and areW

−1
d = Cd =

diag(σd
i )2 as in the first numerical example. The algorithm in Table 1 is used to find

a diagonal weightWm for the parameter misfit. Future work involves finding weights
Wm with more structure.

Since we assume in the proposed algorithm that the data and parameters are random,
but from arbitrary distributions, we can assign posterior uncertainties via(4.1). These
are represented as error bars in Figures 3-9.
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5.2.1. Phillips test problem

This problem was presented by D.L. Phillips [6] and for (5.1) uses

K(s, t) = ψ(s− t)

f(t) = ψ(t)

g(s) = (6− |s|)
(

1 +
1
2

cos
(πs

3

)

)

+
9

2π
sin

(

π|s|
3

)

with

ψ(x) =

{

1 + cos(πx
3 , |x| < 3

0, |x| ≥ 3
.

Sample solutions ˆm of Gm = d derived from the approximation of (5.1) are plotted
in Figures 3-5. The reference solution is the value ofm given by the test problem.

In these samples almost every parameter estimates found by the new algorithm is
better than those found by the other two methods. The error bars associated with the
parameter estimates found by the new algorithm are all small in Figures 3 and 4 because
the estimates are good. However, there are estimates for which the errorbars do not
reach the reference solution.

In Figure 5 another normally distributed sample solution set is plotted on the left.
The randomly generated data in this sample have the same standard deviation as the
samples in Figures 3 and 4 however, in this run the data were more noisy. The plot
on the right is of the absolute error and standard deviation of each parameter estimate
found by the new algorithm. The absolute error is the difference betweenthe parameter
estimate and the reference solution. This plot shows that standard deviation estimates
from the new algorithm are of the same order of magnitude as the absolute error, or
distance from the reference solution. By looking more closely at Figures3-5 we see
that in fact error bars on parameter estimates from the new algorithm often, but not
always, reach the reference solution.

5.2.2. Wing test problem

The solution of this test problem contains discontinuous parameters, whichis a good
test of the proposed algorithm since it uses two-norm. In this problem

K(s, t) = te−st2

g(s) =
e−s/9 − e−4s/9

2s

and

f(t) =

{

1 1
3 < t < 2

3

0 otherwise
.

Sample parameter estimates for all three methods are given in Figures 6 and 7. Fig-
ure 6 shows one sample when the data are normally distributed while Figure 7contains
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Figure 3: Sample parameter estimates for the Phillips test problem. Estimatesare found
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proposed algorithm in
Table 1 which also has error bars. The data noise are from a normal distributions.

two sample solutions when the data are exponentially distributed. Generalizedcross
validation did not perform well in all cases while the results from the L-curve and the
proposed algorithm are good. All estimates from the new algorithm are as good as or
better than those from the L-curve. Since the estimates are good, the corresponding
error bars are all small. There are instances for which the error barsdo not reach the
reference solution however, the standard deviation still represents the absolute error
well.

5.2.3. Shaw test problem

This test problem is a one dimensional image restoration model. In this problem

K(s, t) = (cos(s) + cos(t))2
(

sin(u)
u

)2

u = π (sin(s) + sin(t))

f(t) = 2e−6(t−0.8)2
+ e−2(t+0.5)2

.

This is discretized by collocation to produceGm, while d is found by multiplyingG
andm.

Two sample results from normal distributions are shown in Figure 8. The left plot
shows a sample where all methods performed well while the parameter estimates found
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Figure 4: Sample parameter estimates for the Phillips test problem. Estimatesare found
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proposed algorithm in
Table 1 which also has error bars. The data noise are from an exponential distributions.
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Figure 5: Sample parameter estimates for the Phillips test problem. Estimatesare found
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proposed algorithm in
Table 1 which also has error bars. The data noise are from an exponential distributions.
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Figure 6: Sample parameter estimates for the Wing test problem. Estimates are found
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proposed algorithm in
Table 1 which also has error bars. The data noise are from a normal distributions.
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Figure 7: Sample parameter estimates for the Wing test problem. Estimates are found
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proposed algorithm in
Table 1 which also has error bars. The data noise are from exponentialdistributions.
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Figure 8: Sample parameter estimates for the Shaw test problem. Estimatesare found
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proposed algorithm in
Table 1 which also has error bars. The data noise are from a normal distributions.

by the new algorithm were slightly closer to the reference solution. Correspondingly,
the error bars on the parameter estimates correctly identify small uncertainty. The right
plot is a sample for which the majority of the parameter estimates found by thenew
algorithm are better than those found by the other two methods. However, there are
a few estimates which are worse. The new algorithm is still useful in these instances
because as is typically the case, the error bars reach or come near the reference solution
in every estimate.

Figure 9 shows one sample result when the data are taken from an exponential dis-
tribution. Here we see that the L-curve and GCV estimates are much worsethan those
found with the new algorithm. The results from this sample are typical when data are
taken from an exponential distribution. Since the data are not normally distributed,
least squares estimation is statistically not the best approach. However, we see that by
appropriately weighting the errors in the data and parameter misfits with the proposed
algorithm, the two-norm is still a useful estimator.

6. Conclusions

We propose a new algorithm which combines ideas from deterministic and stochastic
parameter estimation. From a deterministic point of view the new approach isan im-
provement because it effectively expands Tikhonov regularization inthe two-norm in
such a way that the regularization parameter can vary along a diagonal toaccurately



20 J.L. Mead

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

2.5

Shaw Test Problem
Sample C (exponential distribution)

 

 

reference solution

l−curve

gcv

new algorithm

Figure 9: Sample parameter estimates for the Shaw test problem. Estimatesare found
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proposed algorithm in
Table 1 which also has error bars. The data noise are from exponentialdistributions.

weight initial parameter misfits. The benefits from a stochastic point of vieware that
with this approach, a priori information about the parameters is not needed nor is it
necessary to assume normally distributed data or parameters. Rather than identify a
priori distributions of the parameters, the parameter misfit weight is found by ensuring
that the cost function, a sum of weighted data and parameter misfits, is aχ2 random
variable withn degrees of freedom.

Optimization is done in least squares sense however, we find that if the misfits are
accurately weighted, the parameter estimates are not smoothed. This wasshown by
both solving benchmark problems in parameter estimation, and by investigating the
calculated weights on the initial parameter estimates in a simpler, idealized problem.

In the benchmark problems the proposed algorithm typically gave better parameter
estimates than those found from the L-curve and generalized cross validation. In the
cases for which the proposed algorithm did not perform better, corresponding error
bars or uncertainty estimates correctly identify the error.

The goal of the proposed algorithm is to accurately weight initial parametermisfits
in a least squares minimization problem. Optimal weights will be dense weighting ma-
trices which appropriately identify initial parameter misfit errors, and theircorrelations.
Thus future work involves finding dense weighting matrices, rather than diagonal ma-
trices, in addition to improving the optimization routine. Limitations of the algorithm
include the need for good initial parameter estimates, and the computationaltime of
the optimization problem in Table 1.
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