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Abstract. We propose a new approach to weighting initial parametefitia a least squares opti-
mization problem for linear parameter estimation. Paremmisfit weights are found by solving an
optimization problem which ensures the penalty functios the properties of 82 random variable
with n degrees of freedom, whereis the number of data. This approach differs from others in
that weights found by the proposed algorithm vary along gafial matrix rather than remain con-
stant. In addition, it is assumed that data and parametensaadom, but not necessarily normally
distributed.

The proposed algorithm successfully solved three bendhprablems, one with discontinuous
solutions. Solutions from a more idealized discontinuowbiem show that the algorithm can suc-
cessfully weight initial parameter misfits even though tlwe-horm typically smoothes solutions.
For all test problems sample solutions show that results fitee proposed algorithm can be better
than those found using the L-curve and generalized crdgtatian. In the cases where the param-
eter estimates are not as accurate, their correspondindasthdeviations or error bounds correctly
identify their uncertainty.

Key words. Parameter estimation, Tikhonov regularization, Maximukelihood estimate, Non-
necessarily Gaussian noise .
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1. Introduction

Parameter estimation is an element of inverse modeling in which measusenre
data are used to infer parameters in a mathematical model. Parameteatiestiin
necessary in many applications such as biology, astronomy, engige€arth science,
finance, and medical and geophysical imaging. Inversion techniigpugsarameter
estimation are often classified in two groups: deterministic or stochastic.

Both deterministic and stochastic approaches must incorporate thedtitigre are
uncertainties or errors associated with parameter estimation [3], [bBpxXample, in
a deterministic approach such Tikhonov regularization [17] or stochappooaches
which use frequentist or Bayesian probability theory, it is assumed #Htatabntain
noise. The difference between deterministic and stochastic approactined in the
former it is assumed there exists “true” parameter values for a gteof slata while
in the latter the data, parameter values or both are random variables. [14]

Parameter estimation can be viewed as an optimization problem in which an ob-
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jective function representing data misfit is minimized in a given norm,.[JAjom

a deterministic point of view the two-norm, i.e. a quadratic objective funci®the
most attractive mathematically because the minimum can be explicitly writtensactlo
form. From the stochastic point of view this choice of two-norm is statisticaiynbst
likely solution if data are normally distributed. However, this estimate is typicadly le
accurate if the data are not normally distributed or there are outliers in tag1d.

A more complete optimization problem will include a statement about the gieam
misfit, in addition to the data misfit. This statement could be a deterministic bowhd s
as a positivity constraint on the parameters, or a regularization term whgres that
the first or second derivative of the parameters is smooth.

When parameter misfits are included in stochastic approaches thesmamng a
priori probability distributions must be specified. The advantage andivhséage of
the stochastic viewpoint is that prior information about the probability digichuwf
data or parameters must be specified. A priori information for the disimib of data
is tractable because data can (theoretically) be collected repeatedly iiri@maixain a
sample from which one can infer its probability distribution. A priori inferemf the
parameter probability distribution is less reliable than that for the data bedausist
rely on information from the uncertain data [13].

Which ever way one views the problem; positivity constraints, regularizato
probability distributions, typically a weighted objective function is minimized.igk s
nificant difference between methods and their solutions lies in how the tgedgh
chosen.

An experimental study in [15] compares deterministic and stochastioapipes to
seismic inversion for characterization of a thin-bed reservoir. Theiclosion is that
deterministic approaches are computationally cheaper but resultshagood enough
for identifying general trends and large features. They state thatagticlinversion
is more advantageous because results have superior resolutionf@ndnzertainty
estimates.

The experimental results in [15] which suggest that the stochasticagpi® more
accurate than the deterministic approach may occur because the stoappsoach
better weights the data and parameter misfits. Most deterministic appsosutie as
positivity constraints or regularization only use constant or simple weighthe pa-
rameter misfits. On the other hand, stochastic approaches which speoifjormal
or exponential probability distributions weight the parameter misfit with aerse/co-
variance matrix. Weighting with accurate non-constant, dense matricesiralole but
it implies that there is good a priori information. How do we obtain this infdroma
i.e how do we find accurate weights on the data and parameter misfits?

In this work we use the following piece of a priori information to better weitlet
parameter misfit: The minimum value of a quadratic cost function reptiegethe data
and parameter misfit is@ random variable with degrees of freedom, wherds the
number of data. For large, this is true regardless of the prior distributions of the data
or parameters.

For the linear problem, an explicit expression for the minimum value of ts c
function is given as a function of the weight on the parameter misfit. Sireedkt
function follows ay? distribution, this minimum value has known mean and variance.
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To calculate a weight on the parameter misfit a new optimization problem isdsolv
which ensures the minimum of the cost function lies within the expected range

In Section 2 we describe current approaches to solving linear discrptesiie prob-
lems. In Section 3 we describe the new approach and the correspaiganghm, in
Section 4 we show some numerical results, and in Section 5 we give sanduand
future work.

2. Linear Discrete lll-posed Problems
In this work discrete ill-posed inverse problems of the form
d=Gm (2.2)

are considered. Heré is an dimensional vector containing measured d&tais a
forward modeling operator written as anx m matrix andm is am dimensional
vector of unknown parameter values.

2.1. Deterministic approaches

Frequently it is the case that there is no valuerothat satisfies (2.1) exactly. Simple
and useful approximations may be found by optimizing

min||d — Gm]|?, 2.2)

The most common choices fparep = 1, 2. If p = 2, this is least squares optimization
which is the simplest approach to analyze and statistically results in the mdgt like
solution if the data are normally distributed. However, the least squahetosois
typically not accurate if one datum is far from the trend.

If p = 1 accurate solutions can still be found if there are a few data far from the
trend. In addition, it is statistically the most likely solution if the data are expiadgn
distributed. Ag increases from 2 the largest elementlof Gm is given successively
larger weight [11].

Least squares solutions are the simplest to analyze mathematically bdvawvalue
at which the minimum occurs can be stated explicitly. In other words,

min||d — Gm||3 = min(d — Gm)”(d — Gm) (2.3)
has a unigue minimum occurring at
m;, = (GTG)1GTd. (2.4)

However, the inverse solution is not that simple because typi€allg is not in-
vertible and the problem must be constrained or regularized. One comwanpto do
this is Tikhonov regularization in the two-norm whateis found by solving

min {||d — Gm]|7 + A[|L(m — mo)||3} (2.5)
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with mg an initial parameter estimate (often taken to be)X0g yet to be determined
regularization parameter, afida smoothing operator possibly chosen to represent the
first or second derivative.

The optimization problem (2.5) can be written equivalently as a constrameid
mization problem:

min||d — Gml||, subject to ||L(m — myg)||z < 4. (2.6)

In either formulation, (2.5) or (2.6), the optimization problem can be wriéte
min{(d — Gm)”(d — Gm) + (m — mg)" A\L”L(m — mg) } . (2.7)

When the optimization problem is written this way we see that the objective furistio
the sum of a data and parameter misfit. The function is normalized so thatdmis-
fit has weight equal to one while the parameter misfit has wei§AtL. ThusAL”L
represents an a priori ratio of weights on the data and parameter misfpécally,
L is taken to be the identity, first or second derivative operator. There@anerous
approaches for choosingincluding the L-curve [8], Morozov’s discrepancy principle
[12] and generalized cross-validation [9].

The minimum of (2.7) occurs at

m,;; = my+ (GTG + ALTL)"1GT(d — Gmy). (2.8)

This deterministic parameter estimate, (2.8), from Tikhonov regularizataes not
use a priori knowledge, other than specification of the forrh.of

2.2. Stochastic approaches

Some stochastic formulations can lead to an optimization problem similar jo Th&
difference between these stochastic approaches and the cornegpdeterministic
ones is the way in which the weights on the data and parameter misfits aenchos
For example, assume the datare random, independent and identically distributed,
following a normal distribution with probability density function

p(d) = constx exp{—%(d ~Gm)Tc;i(d - Gm)} , (2.9)

with Gm the expected value at and C; the corresponding covariance matrix. In
order to maximize the probability that the data were in fact observed wexfindere

the probability density is maximum. This is the maximum likelihood estimate and it
is the minimum of the argument in (2.9), i.e. the optimal paramaieese found by
solving

min(d - Gm)"C;(d — Gm). (2.10)
This is the weighted least squares problem and the minimum occurs at

m,; = (G'C'G)~ a7 ld. (2.11)
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Similar to (2.4),GTC,G is typically not invertible. In this case the stochastic
problem can be constrained or regularized by adding more a priorniaftion. For
example, assume the parameter valuwesre also random following a normal distribu-
tion with probability density function

p(m) = constx exp{—%(m —mp)TC  (m— mo)} : (2.12)

with mg the expected value ah andC,, the corresponding covariance matrix. If the
data and parameters are independent then their joint distribution is

p(d, m) = p(d)p(m).
The maximum likelihood estimate of the parameters occurs when the joialpitity
density function is maximum, i.e. optimal parameter values are foundlking
min{(d — Gm)’C;Y(d — Gm) + (m — mp)"C;}(m — mo)} . (2.13)

The minimum occurs at
m =mg+ (GTC;'G + C;)1GTC Hd — Gmy). (2.14)

The stochastic parameter estimate (2.14) has been found underdhepties that
the data and parameters follow a normal distribution and are indepeanérndenti-
cally distributed.

2.3. Comparison between Deterministic and Stochastic appaches

Now we are in a situation to point out similarities between Tikhonov regularizatio
in the two-norm and a stochastic approach for normally distributed datpanadhe-
ters. The two equations (2.8) and (2.14) are equivaleﬁgi’f =TandC;! = A\LTL.
Even though the two-norm smoothes parameter estimates and assuemsnoheht
and identically distributed parameters, following normal probability distrilmstiave
can see under these simplifying assumptions how a stochastic approalchgive bet-
ter results. In the stochastic approach dense a priori covariance esatgtter weight
the the data and parameter misfits than when the weightaIaf& with Tikhonov
regularization. This is the justification for the success of the proposecuheth

As further explanation of the advantage of a stochastic approach de¢gm@mninistic
one consider the deterministic constraint

[lm — mg|| < A

When this constraint is applied, each elementrof- mg is equally weighted which
implies that the error in the initial guesas is the same for each element. Weighting in
this manner will not be the best approach if a large temperature charmjber such
anomaly is sought. On the other hand, non-constant weights such asguésiances
C,, may vary along a diagonal matrix and hence give different weightd¢b eement
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of m — mg. The weights can be further improved if the prior is non-diagonal tszau
then correlation between initial estimate errors can be identified.

Regardless of the norm in which the objective function is minimized or how the
problem is formulated, the over-riding question is: How should weights enettms
in the objective function be chosen? In Section 3 we will show that if a @i@drost
function is used there is one more piece of a priori information that camsbkd to
find weights on parameter misfits. In Section 4 we will show that when useighis
chosen in this manner the parameter estimates are not smoothed and itabdse
assumed that the data or parameters are normally distributed.

3. New approach

Rather than choosing a deterministic approach which uses no a priarniation or a
stochastic approach which may use incorrect a priori information wesfon finding
the best way to weight data and parameter misfits in the two-norm usingldgadla
priori information.

Consider parameter estimation reformulated in the following mannernGligtad,
accurate mappin@ and initial estimateng, find m such that

d = Gm+e (3.2)
m = mg+f (3.2)

wheree andf are unknown errors in the data and initial parameter estimates, respec-
tively.

We can viewmn andd as random variables or alternativety,as the “true” parameter
estimate andl as data with error. In either case, parameter estimates are found by
minimizing the errors in the data)(and initial estimates] in a weighted least squares
sense, i.e. solve the following optimization problem

mﬂiln{(d — Gm)"Wy(d — Gm) + (m — mg)" W, (m — mg) } (3.3)

with W, andW,,, weights (yet to be determined) on the error in the dhand initial
parameter estimataegg, respectively.

3.1. Choice of weights

The weights on the data misfit will be taken to be the inverse of the covaradribe
data, i.e W, = C;l. If the statistical properties of the data are not known this weight
can be estimated by collecting the same data repeatedly and calculating thle sam
standard deviation. We do assume however, that the data is good ar@hihist the
mean ofd.

To find the weights on the parameter misW¥,,,,, we use the following Theorem.

Theorem 3.1. Define7 (m) by
Jmis = (d — Gm)TC; (d — Gm) + (m — mp)”'C;;}(m — mo) (3.4)
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with d andm stochastic. In addition, assume the errors in the datnd initial guess
myg are not necessarily normally distributed but have mean zero and iEneesCy
andC,,, respectively. Then as the number of datapproaches infinity, the minimum
value of (3.4) is a random variable and its limiting distribution is tpedistribution
with n degrees of freedom.

Proof. Case 1: Elements af andm are independent and identically normally dis-
tributed. It is well known that under normality assumptions the first andrbterms
in the right hand side of (3.4) arg” random variables with. — m andm degrees of
freedom, respectively.

Case 2: Elements af andm are independent and identically distributed but not
normally distributed. The minimum value of(m) occurs at

m =mg+ (GTC;'G + C;H)1GTCHd — Gmy). (3.5)
Re-write the matrix in (3.5) by noting that
GTC;'GC,,G +GT = GTc;'(GC,GT +Cy)

(c"ci'G+C;t) CnG”,

thus

-1 B
(GTC;lc; + C;}) GTc;'=C,.GT (GC,,GT +C,) . (3.6)

Leth =d — Gmg andP = GC,,GT + Cy, then
m=mg+ C,,G'Ph. (3.7)
The minimum value of7 (m) is
J@m) = (h-GC,G"P Y c;t(h-GC,GTP Y (3.8)
+(CnGTPh)" C;1(C,,G"Ph).

SinceC,; andC,,, are covariance matrices, they are symmetric positive definite, and
we can simplify (3.8) to:

J(m) = hTP~1h. (3.9)

In addition, sinceG is full rank,P—1 and hencé are symmetric positive definite and
we can define

h = Pk, (3.10)

where

kj = i(Pi%)jihr (3.11)
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If the errors in the datal and initial guesang are normally distributed theh; are
normal and henck; are normal by linearity. On the other hand, if the errors in the data
d and initial guessng are not normally distributed, then the central limit states that as
n approaches infinityk; defined by (3.11) is a normally distributed random variable
with zero mean and unit variance.

Now writing (3.9) in terms ok we have

Jm) = kKTP:Plpik (3.12)
= kTk (3.13)
= k4. K2 (3.14)

For largen the k; are normally distributed random variables ir-regardless of the distri-
bution of the errors inl andmg . Thus as: approaches infinity7 (m) is ax? random
variable withn degrees of freedom. This is described more generally in [1]. O

We have shown that the objective function in (3.3) ig%random variable with
n degrees of freedom regardless of the prior distributions of the datgpasneter
misfits. Thus the weights on the parameter misfits will be found via an optimizatio
problem which ensures that the objective function in (3.3) lies within a dritézaon
of the x? distribution withn degrees of freedom.

4. Algorithm

We can determine, within specified confidence intervals, valu¥g gf= C1in (3.3)
that ensure7 (m) given by (3.8) is a¢® random variable with, degrees of freedom
when there is a large amount of data. The larger the confidence intievdligger the
set of possible values &V ,,. These values oW ,,, will be for a specified covariance
matrix for the errors in the da&@d,, and for a specified initial guessy. Thus for each
matrix W,,, there is an optimal parameter valaeuniquely defined by (3.7).

If W,, = A1 then this algorithm is similar to approaches such as the L-curve
for finding the regularization parametarin Tikhonov regularization. However, the
advantage of this new approach is whéd,, is not a constant matrix and hence the
weights on the parameter misfits vary. Moreover, wiép, has off diagonal elements,
correlation in initial parameter estimate errors can be modeled.

One advantage to viewing optimization stochastically is that once the optimal pa-
rameter estimate is found, the corresponding uncertainty or covamaattix for m is
given by [16]

covim) = W;!'-w lGTP-iGwW_ ! (4.1)
with P = GW,'GT + C,. In Section 5 the numerical estimatesrafafe plotted
with error bars which represent standard deviations of these estiriatese standard
deviations are the square root of the diagonal elements of (4.1).
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4.1. Confidence Intervals

For largen J (i) has meam and variance/2n. The (1 — «)% confidence interval
for the mean is

P (202 < (T00) =) /V2 < 202) =1-a, (4.2)
or
P(n—\/éza/2<j(ﬁ1)<n+\/§za/2)zl—a, (4.3)

wherez, , is the z-value on the normal curve above which we find an area /&
Thus for a given (- «) confidence interval we find values ¥ ! that ensure

n— V22, < J(h) <n+ V22
or
n— V222 < hT (GW;AGT + Cp) "h < n+ V22,0 (4.4)

By choosing a value ofv = 0.05, for example, we are stating that we are 95%
confident that the mean Qf (m) is n. In this case the interval in which the cost
function lies isjn — 2.77,n + 2.77), while fora = 0.10 it is [n — 3.64, n + 3.64]. For
largen this is a small interval, thus in our experiments the optimization problem is to
find aW,, such that

b’ (GW,G” +C,) "h=n. (4.5)

4.2. Optimization

There is actually a set of feasible solutidis,, that ensure (4.5) holds. This boundary
surface is well behaved as long Bds well-conditioned. The solution we seek is the
one in which||W1|| is minimized because this will most likely result in the strongest
“regularization” or well-conditioned matrix to invert in (2.14). The norra shoose is
the Frobenius norm, i.e.

HANE =D lal?,
i=1 j=1
because it is continuously differentiable and it is equivalent to the 2-n@m
1
—|Allr < ||All2 < ||A]|F.
\/ﬁll Il < [|All2 < [|A]|F

If W, is to represent the inverse covariance mafjx it must be symmetric posi-
tive definite, thus we define

C,, =LL”

with L lower triangular. We also assume thGtis full rank andn is large. However,
these assumptions may be droppel i symmetric positive definite and the data are
normally distributed. The corresponding algorithm is given in Table 1 asdlts from

it are given in Section 5.
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Table 1. Algorithm for weights
Minimize ||LL7||%
subjectto n —v2z,/2 < h” (GLLTGT + Cy) "h < n+ V22,5
GLLTGT + C, well conditioned

5. Numerical Tests

Matlab was used in all numerical tests, and the optimization problem in Tabks1 w
solved using the functiofminconin the Optimization Toolbox. Future work involves
finding more efficient approaches to the optimization problem so that thygoped
methodology can be used for more realistic problems. For each tédeprehe inputs
vary, and they are: the dath mappingG, initial parameter estimateny and data
misfit weight W, = C;l. In all cases, this weight is a diagonal matrix which is
the inverse of the data variances, i.@iag(c?)2. More accurate representations of
the error covariance from sample data takes considerably more se®kor example
[7]. The outputs from the proposed method include the weights on thenpggamisfit
W, = LL” calculated by the algorithm given in Table (1), parameter estimates (2.14)
and their corresponding uncertainties (4.1). In the first test, Sectigriie emphasis

is on showing how the calculated weights can properly identify a discontirauity,
hence only the value of the weigh¥,,, found by the algorithm in Table 1 are shown.
In the remaining tests, Section 5.2, the emphasis is on parameter estinratitimea
corresponding uncertainties, thus the weights are not shown.

5.1. Discontinuous parameters in an idealized model

In the first test we sought to determine if a diagowa},, could be found which accu-
rately weights the error in the initial parameter misfit when the parameteidiston-
tinuous. The parameters values @¢e ..,0,1,...,1,0,...,0) withm =n = 70. The
matrix G is taken to be the identity so that initial parameter errors are known and the
accuracy of the weights are easy to identify. A more realistic test with artisc@us
solution is given in Section 5.2.2.

Results from the algorithm are plotted in Figures 1 and 2 when the data aard-par
eters are taken from normal and exponential distributions, resplgctivith a standard
deviation of 5x 10-2. The parameter misfith — mg is plotted along with the diagonal
entries ofW-! found by the proposed algorithm. Each of the four plots in Figures 1
and 2 represent differential initial estimates.

In three of the four plots, i.e. fding); = 1,0,5i = 1,...,70, the diagonal elements
of W, found by the proposed algorithm do indeed jump between smaller and large
values accurately reflecting the error in the initial parameter estitmate mg);. In
the fourth plot the calculate@W 1), still accurately weights the parameter misfit, but
in this case the misfit is constant ab0Recall that a large diagonal eleméR 1),
gives small weight t¢m — my);, which is desired whefim — my); is large. That is, if



A new approach to weighting a priori information 11

Normally distributed data
1
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Figure 1: Parameter misfits and their corresponding weights found with
the proposed algorithm in Table 1. Clockwise from top leftmy =
(1,...,1),(0,...,0),(05,...,05),(5,...,5).
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Exponentially distributed data
1

R QESOS
0.5 x 0.5
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Lowt
1 i R XSRS
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Figure 2: Parameter misfits and their corresponding weights found with
the proposed algorithm in Table 1. Clockwise from top leftmy =
(1,...,1),(0,...,0),(05,...,05),(5,...,5).
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we have a bad initial guessng);, we don't want to find dm); near it but instead give
small weight to minimizing m — my);. The difficulty in weighting parameters misfits
in (3.3) is that typically we do not know the accuracymp a priori. However, in this
simple example, the weights found by the proposed algorithm do appiedpnigeight
the parameter misfits without a priori knowledge.

5.2. Benchmark Problems from [5]

Both analysis routines and test problems from [5] were used to congratdest
the algorithm in Table 1. Results from the proposed algorithm were cochpgare
those found from Tikhonov regularization with the L-curve, and andnfigeneral-
ized cross-validation. The L-curve approach plots the parameter (migfitmg = 0
and weighted by\L.” L) versus the data misfit (with weiglh} to display the compro-
mise between minimizing these two quantities. When plotted in a log-log scale the
curve is typically in the shape of an L, and the solution is the parameter \atules
corner. These parameter values are optimal in the sense that thenghemweighted
parameter misfit and data misfit are balanced. Generalized crosatialits based on
the theory that if some data are left out, the resulting choice of paranséteutd result
in accurate prediction of these data.

There are a total of 12 test problems in [5] and here we solve threeraof tPieillips,
WingandShaw They are all derived from approximating a Fredholm integral of the
first kind:

b
/ K (s, ) f(t)dt = g(s). (5.1)

The Phillips andWing problems use Galerkin methods with particular basis functions
to approximate the Fredholm integral while tBaawproblem uses a weighted sum
guadrature method. All approaches or problems lead to a system af &ifygsdoraic
equationsGm = d however, in the Phillips and Wing test probleéhm is different
from d.

Noise is added td from normal or exponential distributions. The standard deviation
varies with each element i, but is of the order of 16%. The initial estimatang is
found similarly, i.e. by adding noise tan from normal or exponential distributions
with a varying standard deviation of the order of 20

The weights on the data misfit and the initial estimaigare the same for all three
solution methods (L-curve, GCV and the algorithm in Table 1) andWIgé =Cy =
diag(c®)? as in the first numerical example. The algorithm in Table 1 is used to find
a diagonal weighWw,,, for the parameter misfit. Future work involves finding weights
W,,, with more structure.

Since we assume in the proposed algorithm that the data and parametreirscam,
but from arbitrary distributions, we can assign posterior uncertaintie@viy. These
are represented as error bars in Figures 3-9.
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5.2.1 Phillips test problem
This problem was presented by D.L. Phillips [6] and for (5.1) uses

K(S,t) = w(S—t)
&) = ()
o = 0 1 goo(5)) (3
with

. 1tcogm, |u <3

Sample solutions 0of Gm = d derived from the approximation of (5.1) are plotted
in Figures 3-5. The reference solution is the valuenodiven by the test problem.

In these samples almost every parameter estimates found by the neithaigs
better than those found by the other two methods. The error bars dssogith the
parameter estimates found by the new algorithm are all small in Figures8Blatause
the estimates are good. However, there are estimates for which théarsoto not
reach the reference solution.

In Figure 5 another normally distributed sample solution set is plotted on the lef
The randomly generated data in this sample have the same standard deagatie
samples in Figures 3 and 4 however, in this run the data were more ndigypldt
on the right is of the absolute error and standard deviation of each paastimate
found by the new algorithm. The absolute error is the difference betthegqrarameter
estimate and the reference solution. This plot shows that standard de@atimates
from the new algorithm are of the same order of magnitude as the absolotec
distance from the reference solution. By looking more closely at Figgi®sve see
that in fact error bars on parameter estimates from the new algorithm, dft¢ not
always, reach the reference solution.

5.2.2 Wing test problem
The solution of this test problem contains discontinuous parameters, vghécgood
test of the proposed algorithm since it uses two-norm. In this problem
K(s,t) = te—st’
678/9 _ 6748/9
ae) = 55—

and

0 otherwise

f(t)—{l 1<t<?

Sample parameter estimates for all three methods are given in Figunels76 Big-
ure 6 shows one sample when the data are normally distributed while Figorgains
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Phillips Test Problem
Sample A (normal distribution)

1.2¢

1 7 —reference solution
© L-curve

osl > gev
* new algorithm

Figure 3: Sample parameter estimates for the Phillips test problem. Estanafesind
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proplasigorithm in
Table 1 which also has error bars. The data noise are from a norrréhations.

two sample solutions when the data are exponentially distributed. Generetizesl
validation did not perform well in all cases while the results from the L-ewamd the
proposed algorithm are good. All estimates from the new algorithm are@bs a@p or
better than those from the L-curve. Since the estimates are good, tesmanding
error bars are all small. There are instances for which the errordoanst reach the
reference solution however, the standard deviation still representbsiodute error
well.

5.2.3 Shaw test problem

This test problem is a one dimensional image restoration model. In thiteprob

K(s,t) = (cogs) +C0$(t))2 <%(u))2
u = w(sin(s)+ sin(t))
flt) = 2¢—6(t-0.8)° + o—2(t+0.57

This is discretized by collocation to produGam, while d is found by multiplyingG
andm.

Two sample results from normal distributions are shown in Figure 8. Thelt
shows a sample where all methods performed well while the paraméteatss found
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Phillips Test Problem
Sample B (exponential distribution)
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Figure 4: Sample parameter estimates for the Phillips test problem. Estanafesind
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proplasigorithm in
Table 1 which also has error bars. The data noise are from an exfgmstributions.
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Phillips Test Problem

Sample C (normal distribution)
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reference solution
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new algorithm
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—— absolute error
- - - standard deviation

o

Figure 5: Sample parameter estimates for the Phillips test problem. Estanafesind
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proplasigorithm in
Table 1 which also has error bars. The data noise are from an exfgmstributions.
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Wing Test Problem
Sample A (normal distribution)
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Figure 6: Sample parameter estimates for the Wing test problem. Estimatesad
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proplasigorithm in
Table 1 which also has error bars. The data noise are from a norrrébaions.

Wing Test Problem Wing Test Problem
Sample B (exponential distribution) Sample C (exponential distribution)
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Figure 7: Sample parameter estimates for the Wing test problem. Estimatesad
by (i) the L-curve, (ii) generalized cross-validation and (iii) the progoaigorithm in
Table 1 which also has error bars. The data noise are from expondistidutions.
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o L-curve 2 o L-curve
bogov
x new algorithm

Shaw Test Problem Shaw Test Problem
Sample A (normal distribution) Sample B (normal distribution)
250
—— reference solution ——reference solution

>ogev
* new algorithm

5 -05 1 1 1 1

10 20 30 40 50 0 10 20 30 40

Figure 8: Sample parameter estimates for the Shaw test problem. Estarafesind
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proplasigorithm in
Table 1 which also has error bars. The data noise are from a norrréhaions.

by the new algorithm were slightly closer to the reference solution. Carnekpgly,
the error bars on the parameter estimates correctly identify small uimtgr{Bhe right
plot is a sample for which the majority of the parameter estimates found hyethe
algorithm are better than those found by the other two methods. Howeeeg, dne
a few estimates which are worse. The new algorithm is still useful in thetnoes
because as is typically the case, the error bars reach or come nezfetleace solution
in every estimate.

Figure 9 shows one sample result when the data are taken from areetiabalis-
tribution. Here we see that the L-curve and GCV estimates are much thars¢hose
found with the new algorithm. The results from this sample are typical whénate
taken from an exponential distribution. Since the data are not normallybdisd,
least squares estimation is statistically not the best approach. Howevseenhat by
appropriately weighting the errors in the data and parameter misfits with dpesed
algorithm, the two-norm is still a useful estimator.

6. Conclusions

We propose a new algorithm which combines ideas from deterministic acllastioc
parameter estimation. From a deterministic point of view the new approachiie-
provement because it effectively expands Tikhonov regularizatidheriwo-norm in
such a way that the regularization parameter can vary along a diagoaetucately
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Shaw Test Problem
Sample C (exponential distribution)
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Figure 9: Sample parameter estimates for the Shaw test problem. Estarefesind
by (i) the L-curve, (ii) generalized cross-validation and (iii) the proplasigorithm in
Table 1 which also has error bars. The data noise are from exporgdistidutions.

weight initial parameter misfits. The benefits from a stochastic point of gsieathat
with this approach, a priori information about the parameters is notegendr is it
necessary to assume normally distributed data or parameters. Rathédehtfy a
priori distributions of the parameters, the parameter misfit weight isfwyrensuring
that the cost function, a sum of weighted data and parameter misfitg;%isaadom
variable withn degrees of freedom.

Optimization is done in least squares sense however, we find that if theésraisi
accurately weighted, the parameter estimates are not smoothed. Théhovas by
both solving benchmark problems in parameter estimation, and by invisgighe
calculated weights on the initial parameter estimates in a simpler, idealizelémprob

In the benchmark problems the proposed algorithm typically gave bet@mpger
estimates than those found from the L-curve and generalized crosatiaiidIn the
cases for which the proposed algorithm did not perform better, quoneng error
bars or uncertainty estimates correctly identify the error.

The goal of the proposed algorithm is to accurately weight initial paramaitdits
in a least squares minimization problem. Optimal weights will be dense weigmiaa
trices which appropriately identify initial parameter misfit errors, and terirelations.
Thus future work involves finding dense weighting matrices, rather tiegodal ma-
trices, in addition to improving the optimization routine. Limitations of the algorithm
include the need for good initial parameter estimates, and the computaiineabf
the optimization problem in Table 1.
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