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Abstract

Recent advances in the collection of Lagrangian data from the ocean and results
about the well-posedness of the primitive equations has led to a re-newed interest
in Lagrangian coordinates. We do not take the view that solving in Lagrangian
coordinates equates to solving on a moving grid that can become twisted or dis-
torted. Rather, the grid in Lagrangian coordinates represents the initial position of
particles, and it does not change with time. However, using Lagrangian coordinates
results in solving a highly nonlinear partial differential equation. The nonlinearity
is mainly due to the Jacobian of the coordinate transformation, which is a precise
record of how the particles are rotated and stretched. For linear (spatial) flows,
we give an explicit formula for the Jacobian. We also prove that linear (in space)
steady state solutions of the Lagrangian shallow water equations have Jacobian
equal to one. Given the formula for the Jacobian, we describe situations where the
Lagrangian shallow water equations are invalid in Lagrangian coordinates for long
time integrations, because the shallow water assumption is violated. On the other
hand, in situations where the shallow water assumption is not violated, accurate
numerical solutions of the Lagrangian shallow water equations are found with finite
differences, the Chebyshev pseudospectral method, and the fourth order Runge-
Kutta method. The numerical results shown here emphasize the need for high order
temporal approximations for long time integrations.

Key words: Lagrangian coordinates, shallow water equations, Jacobian, finite
differences, Chebyshev pseudospectral, Runge-Kutta.

1 Introduction

There are two distinct ways to specify a flow field. The typical approach is
Eulerian where the flow quantities are defined as functions of space and time. It
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gives a picture of the spatial distribution of the flow quantities at each instant
during motion [1], and the fluid motions and properties are described at fixed
points. In this reference frame, one studies the individual spatial positions,
regardless of what particles reach those positions at a given instant of time
[11].

Alternatively, we can use the Lagrangian description where the particles are
identified by the positions they occupy at a given instant of time [11]. The
Lagrangian solution has the future positions of all fluid elements with respect
to their position at some initial time. The outcome of the Eulerian and La-
grangian approaches are equivalent if the total information about the entire
body can be obtained [11].

Lagrangian coordinates have been neglected for different reasons. One reason
is that scientists have typically only made Eulerian measurements, and the
Eulerian statistics are not related to Lagrangian ones in a simple way [16]. A
second reason is that a Lagrangian specification is useful only in certain special
contexts, and it leads to a cumbersome analysis [1]. Thirdly, it is perceived
that Lagrangian coordinates are a moving coordinate system and the grid can
become twisted and distorted.

With advances in satellite monitoring, scientists are now collecting vast amounts
of Lagrangian data in the ocean [7,10]. These data are collected from floats
or drifters that remain in the ocean and transmit their information by satel-
lite. Using these data in ocean models is a challenge because the models are
written in Eulerian coordinates. Thus the first two reasons for not using La-
grangian coordinates given in the previous paragraph are not valid in this
context. As a response to the third reason, we offer a different viewpoint of
solving in Lagrangian coordinates. In Lagrangian coordinates the “grid” rep-
resents the initial position of the particles, which does not become twisted and
distorted. The subsequent positions of the particles are calculated by solving
a highly nonlinear partial differential equation (which is the result of the coor-
dinate transformation) and the difficulty in solving in Lagrangian coordinates
is not that the grid can become distorted, but that one needs to solve highly
nonlinear equations. The nonlinearity is mainly due to the Jacobian of the
transformation, which is a precise record of how the particles are rotated and
stretched. Here, we begin a better understanding of solving in Lagrangian co-
ordinates by analyzing he behavior of the highly nonlinear terms for simple
flows. Solving these equations numerically adds challenges, but we hope to use
numerical methods that accurately describe the physical situation that occurs.

A more theoretical reason for studying the Lagrangian viewpoint comes from
results in [2] about the well-posedness of the primitive equations in an open
domain. A problem occurs in the vertical direction when using Eulerian coor-
dinates, because the flow can vary between subcritical and supercritical flow.



One way to ensure uniqueness of solutions is to apply boundary conditions
mode by mode, but this is not practical. Alternatively, the author’s in [2]
show that uniqueness of solutions can be guaranteed in the open ocean if the
equations are solved on moving particles. Essentially, every mode is subcrit-
ical on the moving particles because vorticity is conserved on fluid particles.
Thus when we solve the primitive equations in an open domain on moving
particles (or Lagrangian coordinates), the boundary conditions do not need to
be applied mode by mode.

Lagrangian coordinates have not been completely abandoned. It has be noted
that the nonlinear advective terms in the governing equations for atmospheric
modeling are greatly simplified in Lagrangian coordinates. However, in this
setting, the pressure gradient and viscous terms become more nonlinear. Semi-
Lagrangian methods [15] take all of this under consideration and only use
Lagrangian coordinates for the advective terms, while still calculating the
pressure gradient terms on an Eulerian grid. Thus an accurate interpolation
scheme is critical to the success of semi-Lagrangian methods.

The arbitrary Lagrangian Eulerian method, (ALE) [8], temporarily computes
the entire governing equations in Lagrangian coordinates. Then at some arbi-
trary point in time the solution is interpolated, and the governing equations are
computed in Eulerian coordinates. If one chooses to interpolate the solution
at nearly every time-step, the approach is then similar to the semi-Lagrangian
method described in the previous paragraph.

Lagrangian coordinates are not the only way to follow particles. Unified co-
ordinates [17] follow pseudo-particles, which are usually slower than the La-
grangian particles. The speed of the particles depends on the choice of a given
parameter, and the authors suggest that a purely Lagrangian flow is not a
good choice.

There are no benchmark problems for Lagrangian coordinates, nor is there
a standard way of presenting solutions. Here we develop the convention of
plotting the trajectories, or the solution of the given differential equation at
all points in space for all time. Obviously, the greatest error is at the final time
and that is where we determine their accuracy, but the power of Lagrangian
solution is its temporal evolution. The problems we solve here include the
following linear trajectories: center, spiral, source and sink. We also solve a
nonlinear problem with a solution that combines all of these forms.

In Section 2 we state the advective form of the shallow water equations in
Lagrangian coordinates. In Section 3 we investigate the dynamic stability of
the Lagrangian form for linear flows. Then in Section 4 we describe the nu-
merical methods and state the test problems with their numerical results. The
conclusions are in Section 5.



2 Lagrangian Shallow Water Equations

The shallow water equations can be written in different forms, and here we
use the advective form. In Eulerian coordinates the horizontal momentum
equations are
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D VT, ®
Dv oh

_ o 2
pr T, (2)

with the material derivative
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The mass continuity equation is
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The horizontal velocities u and v are in the East/West and North/South di-
rections respectively. In the ocean (the viewpoint adopted here) A is the depth
of a surface with constant density, while in the atmosphere it is the height of
the free surface above sea level. In addition, f is the Coriolis parameter, and
g is the gravitational constant.

In Eulerian coordinates the velocities u and v, and the depth A, are given
at fixed points in space (x,y). In Lagrangian coordinates, the velocities and
depth are given on moving particles with positions (z(a, b, t), y(a, b, t)) at time
t, where (a, b) is the initial position of the particle. In Lagrangian coordinates
the positions of the particles are calculated at all points in time from which the
velocities at these positions can be inferred. The depth of the moving particles
are calculated by solving the appropriate continuity equation in Lagrangian
coordinates, i.e. (9).

The coordinate transformation from Eulerian u(z,y,t),v(x,y,t), h(z,y,t) to
Lagrangian z(a, b, t),y(a,b,t), h(a,b,t) follows

u(z,y,t)= %x(a, b, t) (4)

o, 9,1) = yfa,b,1). (5)



Note that in Lagrangian coordinates differentiation with respect to time is per-
formed by following the motion of a given particle, thus the material derivative
D/ Dt is equivalent to the partial derivative /0t [11]. The result of the trans-
formation is the Lagrangian shallow water equations in Cartesian coordinates
with momentum equations
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The continuity equation is
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where (hJ), is the initial value of hJ. The full derivation of (6)-(9) can be
found in [6].

In [2] the authors show that uniqueness of solutions of the shallow water equa-
tions on moving particles is guaranteed if appropriate boundary conditions are
used, and they give some numerical results from the Lagrangian form. Here we
more rigorously investigate the dynamical behavior and the numerical solution

of (6)-(9).

To fully appreciate the underlying dynamical system and its nonlinearities we
re-write the second order derivative system (6)-(7) as a first order system:
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3 Linear Stability Analysis

In this section we investigate the stability of the Lagrangian shallow water
model (9), (10)-(13) with initial conditions

z(a,b,0) =a y(a,b,0) =b (14)
u(a,b,0) = uy v(a,b,0) = g (15)
h(a, b, 0) = ho. (16)

There is the potential for both numerical and dynamical instability. The latter
occurs when the true solution approaches infinity, while numerical instabilities
occur when the numerical solution approaches infinity but the true solution
does not. Since the equations are highly nonlinear, we will not determine the
stability of specific numerical methods used to solve them. We will however,
discuss the dynamical behavior of the shallow water equations in Lagrangian
coordinates. First recall that when using the shallow water equations, it is
assumed that the depth of the isopycnal, i.e. h(a, b, t), is slowly varying with
respect to spatial position. That is, the variation of A over horizontal distances
of order h is negligible [1]. Here we have an explicit formula for A, i.e. (9), thus
we know that if J~! approaches infinity, then the depth h approaches infinity,
and the shallow water assumption is violated. In addition, if the depth A is
large initially and J~! approaches 0, the shallow water assumption will again
be violated.

To understand the circumstances under which the shallow water assumption
is violated, we look at the situation when the underlying dynamical system
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is linear with respect to z and y and has constant coefficients, i.e.

U=C1T + CoY (17)
V=C3% + CqYy. (18)



Theorem 1 If u and v in the solution of (9), (10)-(13), (14)-(16) take the
form (17)-(18), then the Jacobian J takes the form

J = ePitA2)t (19)

where A1 and Xy are the (not necessarily distinct) real parts of the eigenvalues
of the matriz

C1 C
A=|"7]. (20)
C3 C4

PROOF. The Jacobian J is defined
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where z(a, b,t) and y(a,b,t) are solutions of

ox
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with initial conditions z(a, b,0) = a and y(a, b,0) = b.

Case 1: The eigenvalues of (20), denoted by A; and Ay, are real and distinct and
so the equilibrium solution at the origin (z,y) = (0,0) is a source, sink, or
saddle. Let the corresponding linearly independent eigenvectors be denoted

w, = Wy = . (23)
W12 Wa2
T
Then for x = (z y)

X = dlwle’\lt + d2W2€A2t

for some constants d;, dy. Applying the initial conditions we get

dy = Wo20 — W1 b (24)

W11Wa2 — W21W12

- b
d2 _ W120 + W11 (25)

b
W11Wa2 — W21W12

and the result follows with J = e(A1+2)t,



Case 2: There is one repeated eigenvalue of (20), denoted by A, with corresponding
eigenvector w. In addition, let z be linearly independent with respect to w
with (z + wt)e* a solution of the system (21)-(22). Then

X = (diw + dy(z + wt)) e

with dy, ds given by (24), (25) but with w, replaced by z. The result follows
with J = 2.

Case 3: There are two imaginary eigenvalues and so the equilibrium solution at the
origin is either a spiral or a center. Denote the eigenvalues by A\ o = a £ 37
with complex eigenvectors w = wy + iwy. Then

x = (d;(w cos Bt — wy sin Bt) + da (w1 sin Bt — wy cos Bt)) ™,
and dy, dy are again given by (24)-(25). The result follows with J = e?.

O

The following are consequences of Theorem 1:

e Sources, sinks or saddles:

(hJ)o  if A + Ao = 0 (saddle, \; = Ay = 0)
tli)rgoh = tli)rglo(hJ)oJ_l = 0 if Ay +X>0 (saddle, source)
o0 fANM+X<0 (saddle, sink).

For long time integrations, the shallow water assumption will be violated if
there is a sink or the saddle where h approaches infinity, because h will have
large variation. In addition, the shallow water assumption will be violated
in long time integrations if the initial depth hg is large and there is a source
or the type of saddle where h approaches 0. In all other cases, a stable,
accurate, numerical method will be able to calculate solutions for long time
periods.

e Centers: The eigenvalues of (20) have zero real part, thus J = 1. In addition
the solutions in the (z,y) plane remain stable as ¢ — 0o. Thus, a stable,
accurate, numerical method will be able to calculate solutions for long time
periods.

e Spiral sources or sinks: Both the real and imaginary parts of (20) are
nonzero and the situation is similar to a source or sink. That is, there is
a problem with long time integrations if there is a spiral sink, while if the
initial depth is large, a problem if there is a spiral source. However, in the
other cases a stable, accurate, numerical method will be able to calculate
solutions for long time periods.



Theorem 2 Steady state solutions of the Lagrangian shallow water equations

(6)-(7), (9), (14)-(16) which satisfy (17)-(18) and satisfy

ou ov

— =0 —=0 2
ot ot ’ (26)

have corresponding Jacobian

J=1.

PROOF. Conditions (12)-(13) and (26) imply
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Using (10)-(11) and (17)-(18) in (29) we get that ¢; = —ca.

Case 1: If the eigenvalues of (20) are real and distinct, then (using the notation from
the proof of Theorem 1)

o= W11 Woa A1 — W1aWa1 Ao
1=
Wi11W22 — W21Wi12
o) = W11 WAy — W12Wa1 Ay
4 — .

W11W22 — W21 W12

Since w; and ws are linearly independent, A\; + Ay = 0 and J = 1.
Case 2: If there is one repeated eigenvalue of (20), then (using the notation from
the proof of Theorem 1)

—wWiWy + )\(wlzg - 21’11)2)

C1 =
W1Re — W221

N WL Ws + /\(’LU122 - ’111221)
L=

Wiz — W22

Since w and z are linearly independent, ¢; # —c4. Thus it is not possible to
have a steady state solution when there are repeated eigenvalues.



Case 8: If there are two imaginary eigenvalues of (20), then (using the notation from
the proof of Theorem 1)

a(w11w22 - w12w21) - 5(10111022 - w12w21)
Wi11Wa2 — W21W12
a(w11w22 - w12w21) + 5(1111111)22 - w12w21)

Wi11W22 — W21W12

Ccl=

Cq =

Since w; and wy are linearly independent, o = 0 (center) and J = 1.

O

Lemma 3 Steady state solutions of the Lagrangian shallow water equations
of the form (17)-(18) are either saddles with the sum of the eigenvalues of A
in (20) equal to 0, or centers in the (x,y) plane.

We conclude this section by stating that if we discretize the Lagrangian shallow
water equations equations, i.e. (6)-(7) and (9), and solutions are of the form
(17)-(18) then stable solutions can be found for long time periods in all but
the following two cases

e The sum of the real parts of the eigenvalues of (20) is strictly negative, thus
the solution of the Lagrangian shallow water equations is a sink, spiral sink
or saddle. In this case as t — oo either all or a significant portion of the
particles converge together and the isopycnal moves infinitely deep.

e The initial depth & is large and the sum of the real parts of the eigenvalues
of (20) is strictly positive, thus the solution of the Lagrangian shallow water
equations is a source, spiral source or saddle. In this case as t — oo either
all or a significant portion of the particles diverge and the isopycnal moves
to the surface.

4 Numerical Experiments

4.1  Numerical Methods

We solve the Lagrangian shallow water equations (6)-(9) with both high and
low order methods in space and time in order to study the effect of different
order methods on the numerical solution.

The low order spatial discretization is a second order centered finite difference:

10



k k
ka Ty T Ty
da ™’ Aa
with one sided differences at the boundaries and similarly for %, %, and %.
The low order temporal discretization is also a second order centered finite
difference:

2 k+1 o,k k—1
0§ _ Tij —2wp;+

o2 (At)?

The high order spatial discretization is the Chebyshev pseudospectral method.
It is a truncated global approximation

() = ;)CjTj(a),

where the basis functions Tj(a) are the set of orthogonal Chebyshev polyno-
mials

T;(a) = cos(j cos ' a).

The collocation method is used to calculate the coefficients {c;}, that is,
the approximation is exact at the Chebyshev points a; = cos(wk/N), k =
0,...,N. This method gives highly accurate approximations for the solution
of partial differential equations [3,4], and has been widely used and studied,
e.g. [5,9,13,14].

The spatial derivative is approximated by considering that there are unique
Lagrange polynomials /;(a) of degree N [3] such that

N

z(a) = Y x(a;)lj(a).

J=0

Thus
d

d
%-’E(a) ~ x(“j)%lj(a),

j=0

or for x = (z(ag) --.z(an))"

ox
“_D
oa *
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where

d
D;; = %lj(a) |a=a;-

Note that the matrix D is dense, while it is sparse for the finite difference
method. A three point centered difference, for example, leads to a tridiagonal
matrix D in one-dimensional applications. Pseudospectral methods can also
be seen as the limits of finite difference methods of increasingly higher order
[4]. Here we use an FFT algorithm to compute the derivative [3].

In the two dimensional problem with N points in the East/West direction and

M points in the North/South direction z(a,b) is represented by a matrix of
the form

.T(a,(),bo) .T(CL(),bl) .’L'(Llo,bM)

X — .T(a,l,bo) .T(G,l,bl) .’L‘(CLl,bM)

.T(CLN,b()) .T(GN, bl) . :C(GN,bM)

The spatial derivatives can then be represented

8:1:) N
| =2 DXy
(8@ i 0 !

ij k=
8x> N
ar = Z Dszk
(ab ij k=0 ’

fore=1,..., N—1land j=1,...,M — 1.

The high order temporal integration is done with the classical fourth order
Runge-Kutta method, and the second order time derivative is written as a
first order system, i.e. (10)-(13).

Three different combinations of numerical methods were used: (1) finite dif-
ference in space and time (FD/FD), (2) finite difference in space and Runge-
Kutta in time (FD/RK), and (3) Chebyshev pseudospectral in space and
Runge-Kutta in time (CPS/RK). In most of the test problems, the spatial
derivatives are of simple linear functions, thus the accuracy of the temporal
discretization is more important than the accuracy of the spatial discretiza-
tion. In these cases good accuracy is obtained with a small number of spatial
grid points and increasing the number of grid points does not decrease the er-
ror. Also noteworthy is the fact that a small time step was needed for both the
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low and high order spatial discretization. The is due to the highly nonlinear
time integration.

4.2  Test Problems

Shallow water theory states that the range of the depth h(a,b,t) should be
much smaller than the size of the domain [ag, a,] X [by, b,]. In these simulated
examples we used the spatial range [—1,1] x [—1,1] in meters and initial
depth hy = 0.002 meters. We applied the initial conditions (14)-(16), and the
magnitude of the initial velocities are consistently 1 m/s. Results are shown
after one and two seconds. In some cases the velocities and depth increase,
while in others they decrease.

Boundary conditions were specified for z on the East/West boundary, for
y on the North/South boundaries, and for h at all boundaries. These are
the boundary conditions that ensure a unique solution for the shallow water
equations on moving particles, as proved in [2].

For each test problem, appropriate forcing terms were added to the Lagrangian
shallow water equations to ensure that the test problem was an exact solution.
However, in the case of the center, an exact solution was found without adding
a forcing term. The exact solutions for each of the five problems are given below
and plotted in Figures 1 and 2

The errors are measured at the final integration time step and they are calcu-
lated

_ MaXala \/(x(a, b) — zr(a,b))? + (y(a, b) — yr(a,b))?

€0 (CL', y) -
MaXajiq,b \/JJT(G, b)? + yr(a, b)?
e (h) _ maxaua,b h(a, b) — hT(CL, b)|
o MaXaap |hr(a,b)?|
e (Center

r=acost+ bcost
y=—asint + bcost

L 2 12
h—W(a + b° — max(a +b))+h0

Errors are shown in Table 1, and we see that the solution from the high
order method (CPS/RK) is significantly better than that from the other two
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Fig. 1. Two second trajectory solutions of Lagrangian shallow water equations with
N, M =10: (a) center, (b) source, (c) saddle, and (d) spiral sink.

methods. The depth in this problem is quadratic in both a and b, thus the
high order spatial approximation (CPS) increases the accuracy considerably.
On the other hand, adding a high order temporal approximation (RK) to
the finite difference method does not compensate for the inaccuracies in the
spatial finite difference method.

e Source
x=aqae?
y = be'
h=ho(a + b)

Errors are shown in Table 2 and there is significant improvement when
the high order temporal approximation (RK) is used, because the source
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Table 1. Error in the solution of the Lagrangian shallow water equations for the

center test problem.

Method || N, M At | T | ex(z,y) | ex(h)
FD/FD 10 1.E-03 | 1 | 1.6E-02 | 3.0E-02
2 | 3.1E-01 | 4.5E4+00
FD/RK 10 1E-03 | 1 | 1.6E-02 | 2.8E-02
2 | 2.5E-01 | 1.2E401
CPS/RK 6 1E-03 | 1 | 2.6E-14 | 9.2E-14
2 | 1.1E-12 | 5.3E-12

solution is growing exponentially in time. Here h is a linear function of a
and b, thus the spatial derivative approximation is good even with the low

order method (FD).

Table 2. Error in the solution of the Lagrangian shallow water equations for the

source test problem.

Method | NyM | At | T | ex(z,y) | ex(h)
FD/FD 10 1E-03 | 1 | 2.0E-04 | 4.4E-04
2 | 5.8E-05 | 2.0E-04
FD/RK | 10 |1E-03 |1 | 1.4E-14 | 2.1E-14
2 | 1.1E-13 | 2.3E-13
CPS/RK 6 1E-03 | 1 | 1.3E-14 | 2.6E-14
2 | 1.2E-13 | 2.7E-13
e Saddle
r=ae "’
y = be”

h= h()(a + b)e_t

Errors are given in Table 3 and we see that the results are similar to those
for the source. The spatial derivatives are of linear functions, so dramatic
improvement is obtained simply by adding a high order numerical method
in time.

e Spiral sink

r=e""(acost+ (a+b)sint)
y=e " (bcost — (2a + b) sint)
h= ho(a + b)€2t
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Table 3. Error in the solution of the Lagrangian shallow water equations for the
saddle test problem.

Method | NyM | At | T | ex(x,y) | ex(h)

FD/FD 10 1E-03 | 1 | 2.2E-04 | 1.7E-03
2 | 6.0E-05 | 1.1E-02
FD/RK 10 1E-03 | 1 | 1.6E-14 | 3.TE-14
2 | 1.1E-13 | 3.7E-13

CPS/RK 6 1E-03 | 1 | 1.3E-14 | 4.3E-14
2 | 1.2E-13 | 5.3E-13

Errors are in Table 4 and we see similar behavior as the source and saddle
at time T = 1. However, at T = 2 the solutions become unreliable for
all methods. This is because the depth h grows exponentially in time and
thus the shallow water assumption is violated. At time 7" = 2 the depth has
grown to 54 times its original size, so the range of A is no longer significantly
smaller than the spatial scale. We are able to obtain more accurate solutions
and integrate for longer time periods if we take a smaller value for h. In Table
5 we show results when hg = 2 x 1075.

Table 4. Error in the solution of the Lagrangian shallow water equations for the
spiral sink test problem, hg = 0.002m.

Method || N,M | At | T | ex(z,y) | €x(h)

FD/FD 10 1E-03 | 1 | 5.2E-03 | 9.5E-02
2 | 1.2E402 | 7.8E-01

FD/RK 10 1E-03 | 1 | 6.0E-14 | 4.7E-13
2 | 5.4E401 | 7.6E-01
CPS/RK 6 1E-03 | 1 | 1.3E-13 | 7.0E-13
2 | 6.1E401 | 8.2E-01

e Nonlinear

acost —bsint
\/az +b24e2(1— a2 —1?)
_ asint + bcost
\/a2 +b02+e 2 (1 —a?— b?)
h= hge' (a2 +b0+e (1 —a?— b2)>

xr=

As was the case with the spiral sink, we see exponentially growing values
of h, so we again choose hy = 2 x 107°. Solutions in the (z,y) plane with
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Table 5. Error in the solution of the Lagrangian shallow water equations for the
spiral sink test problem, hy = 0.00002m.

Method | NyM | At | T | ex(x,y) | ex(h)

FD/FD 10 1E-03 | 1 | 2.6E-03 | 2.3E-02
2 | 2.9E-02 | 3.7E-01
FD/RK 10 1E-03 | 1 | 1.6E-14 | 9.8E-14
2 | 24E-13 | 3.6E-12

CPS/RK 6 1E-03 | 1 | 1.8E-14 | 1.3E-13
2 | 3.4E-13 | 8.9E-12

15

. =)
.

5
-15 -1 -0.5 0 05 1 15

Fig. 2. One second trajectory solution of Lagrangian shallow water equations with
N, M = 10 for the nonlinear test problem.

initial positions inside the unit circle spiral outward towards the circle, while
initial positions outside the circle, spiral inward towards it. Our choice of
domain results in both types of behavior (see Figure 2).

Since both the spatial and temporal approximations are highly nonlinear,
there is no benefit to studying the low order spatial approximation with the
high order temporal approximations (FD/RK). In Table 6 we give results
from both the high order and low order methods for increasing grid sizes.
At time T = 0.5 we see the significant advantage of the high order spatial
and temporal approximation. In addition, as we increase the number of grid
points the accuracy of CPS/RK increases at a higher rate than with the low
order (FD/FD) approximation. However at 7" = 1.0 the accuracy of both
methods rapidly decay because again we have exponentially growing h.
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Table 6. Error in the solution of the Lagrangian shallow water equations for the
nonlinear test problem.

Method | N,M | At T | eo(z,y) | ex(h)

FD/FD 10 1E-03 | 0.5 | 5.0E-04 | 1.7E-02
22 1E-05 | 0.5 | 8.3E-06 | 5.7E-03
40 1E-06 | 0.5 | 5.3E-06 | 2.1E-03
40 1E-04 | 1 | 3.2E-04 | 2.7E-02
CPS/RK 6 1.E-03 | 0.5 | 2.7E-05 | 5.2E-02
16 1E-04 | 0.5 | 7.5E-08 | 8.6E-05
32 1E-05 | 0.5 | 2.3E-12 | 1.TE-09
32 1E-05 | 1 | 6.4E-06 | 6.1E-03

5 Conclusions

We have solved the shallow water equations in Lagrangian coordinates when
the underlying dynamical system possesses a center, source, saddle, spiral sink,
and one case when the spatial flow is nonlinear. In the linear cases, we found
an explicit expression for the Jacobian of the Lagrangian transformation as
a function of the eigenvalues of the linear system. We also proved that the
Jacobian in the steady state calculation of the shallow water equations is
equal to one. Even though this analysis is for spatially linear flows, it gives
us an indication of how the Lagrangian shallow water equations will behave
locally for nonlinear flows.

We saw, both theoretically and numerically, that the shallow water equations
become invalid in long time integrations when the majority of the particles
converge together. In this situation the depth of the isopycnal, which is found
from the exact solution of the continuity equation, approaches infinity. Since
the depth has large variation with respect to the horizontal distance, the
shallow water assumption and hence the shallow water equations are no longer
valid. A similar situation occurs if the particles are deep initially, and as time
progresses the majority of the particles diverge in the (z,y) plane.

In all other linear cases, or if the initial depth was chosen to be sufficiently
small, accurate solutions were found. When the particles’ positions change
linearly with respect to their initial position, simple spatial derivative cal-
culations result in errors of 107 !® after the flow had completed at least one
cycle through the domain. When the relationship between the particles’ posi-
tion and their initial position is not linear, a high order spatial approximation
should be used to get errors on the order of 10713, In either case, a high order
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temporal approximation such as the fourth order Runge-Kutta method used
here, is needed to accurately solve the linear flow in Lagrangian coordinates.

In the nonlinear example, errors of the order 10~® were obtained after a shorter
time scale than in the linear examples. However, in this example the shallow
water equations eventually became invalid. In order to have a thorough un-
derstanding of circulation in Lagrangian coordinates a similar analysis to the
one done here will need to be carried out with the full primitive equations.
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