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Abstract. Joint inversion of multiple data types was studied as early as 1975 in [1],

where the authors used the singular value decomposition to determine the degree of ill-

conditioning of joint inverse problems. The authors demonstrated in several examples

that combining two physical models in a joint inversion, and effectively stacking discrete

linear models, improved the conditioning of individual inversions. This work extends

the notion of using the singular value decomposition to determine the conditioning of

discrete joint inversion to using the singular value expansion to determining the well-

posedness of joint operators. We provide a convergent technique for approximating the

singular values of continuous joint operators. In the case of self-adjoint operators, we

give an algebraic expression for the joint singular values in terms of the singular values

of the individual operators. This expression allows us to show that while rare, there

are situations where ill-posedness may be not improved through joint inversion and

in fact can degrade the conditioning of an individual inversion. We give an example

of improving inversion with two moderately ill-posed Green’s function solutions, and

quantify the improvement over individual inversions. Results from this work show that

analysis of singular values of compact operators describing different data types before

an inversion helps identify which types of data are advantageous to combine in a joint

inversion.
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1. Introduction

Joint inversion involves inverting one or more data sets that share common parameters

x, e.g. Ax = d1 and Bx = d1 where d1 and d2 are distinct data sets while A and B

are distinct bounded linear operators. Both systems are typically ill-posed, the data

contain noise and hence regularization is required to estimate the parameters. For

example, using Tikhonov regularization with the first equation we optimize

min
x

{
‖Ax− d1‖2

2 + α2‖Lx‖2
2

}
.
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Introducing regularization means we solve a nearby well-posed problem that may add

bias to the parameter estimates [2].

To make the problem less ill-posed, we could introduce addition data through joint

inversion and optimize

min
x

{
‖Ax− d1‖2

2 + ‖Bx− d2‖2
2

}
with appropriately weighted data and operators. Additional data has the potential to

regularize and hence reduce ill-posedness in individual systems. This is advantageous

over regularization methods like Tikhonov because the bias introduced by the additional

term comes from a physically motivated model, rather than initial estimates of the

parameters or their derivative values.

Joint inversion has become common in Geophysical applications. For example,

electromagnetic and seismic data can be jointly inverted for geophysical parameters

[3, 4]. Even though the physics describing each data set may not share the same

parameters, data can be combined in an inversion using petrophysical relationships

[5] or by the cross-gradient approach [6]. Cross-gradient regularization assumes the

parameters from each data set are structurally similar and has also been used to combine

gravity and magnetic data [7], and resistivity and seismic data [8, 9]. In all cases

numerical results show that joint inversion improves separate inversions.

In this work we discuss methods to quantify the amount by which joint inversion

improves individual inversions. Ill-posedness in each system can be measured by

analyzing their singular values. For example, using discrete representations A ∈ Rm1×n

and B ∈ Rm2×n of the linear operators A and B, the singular values of the stacked

matrix

C ≡

[
A

B

]
give the degree of ill-conditioning of joint inverse problem. In particular, if the singular

values σk decay like k−q, we call q the degree of a mildly or moderately ill-posed

problem. Larger values of q indicate larger degrees of ill-posedness and in severely

ill-posed problems σk decays like e−qk [10].

In this work we consider continuous compact linear operators that represent physics

from the data collection process, rather than discretized versions of them. Therefore, in

Section 3.1 we extend the notion of a vertically concatenated matrix to the process

of combining compact linear operators. This process is understood for Tikhonov

regularization [11] and we extend it to the more general direct sum of integral operators

on Hilbert spaces [12]. We give a practical approach to calculating the singular values in

Section 3.2 using a Galerkin method. If the operators are self-adjoint operators we show

in Section 3.3 that it is possible to get a closed form expression for the joint singular

values in terms of the singular values of the individual operators. Understanding the

ill-posedness of data collection techniques before data is collected opens the door to

experimental design. We illustrate this on joint inversion of two simple one-dimensional

ordinary differential equations in Section 4.
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2. Background

2.1. Singular Value Expansion

The singular value decomposition is the tool of choice for rigorous analysis of least

squares solutions to discrete linear inverse problems. The continuous extension of this

tool is the singular value expansion (SVE) [13, 11, 14, 15, 16]. It decomposes a compact

linear operator into orthogonal functions.

Theorem 2.1 (Singular Value Expansion) Let H, HA be Hilbert spaces, and let

A : H → HA be a compact linear operator. Then there exists orthonormal sequences

{φk} ⊂ H and {ψk} ⊂ HA and positive numbers σ1 ≥ σ2 ≥ · · · converging to zero, such

that

A =
∞∑
k=1

σkψk ⊗ φk, and A∗ =
∞∑
k=1

σkφk ⊗ ψk.

We define ψk ⊗ φk as

(ψk ⊗ φk)h = 〈h, φk〉Hψk,

for all h ∈ H. Note that A∗ is also a compact linear operator and denotes the adjoint

of A. Furthermore,

Aφk = σkψk for all k

and

Ah =
∞∑
k=1

σk〈φk, h〉Hψk for all h ∈ H.

Additionally, {φk} is a complete orthonormal set for N (A)⊥ and {ψk} is a complete

orthonormal set for R(A).

Proof. See [11] or [17].

�
The SVE yields a family of singular function, singular value pairs {(σk, φk)}∞k=1 that

satisfy

A∗Aφk = σ2
kφk.

The operator A∗A may not be invertible and we express the generalized inverse as

A† =
∞∑
k=1

σ−1
k φk ⊗ ψk. (1)

The least squares solution that minimizes ‖Ah− f‖2
HA

is given by

h = A†f =
∞∑
k=1

σ−1
k (φk ⊗ ψk) f =

∞∑
k=1

〈ψk, f〉HA

σk
φk for all f ∈ D

(
A†
)
.
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However, in infinite dimensions A has an infinite sequence of singular values decaying

towards zero. Therefore, σ−1
k increase in an unbounded manner and A† is not a compact

operator [18, 15].

Example: Define the compact linear operator A : H → HA, whereH = HA = L2(0, 1),

by Ah(t) =
∫ t

0
h(s)ds. Then the adjoint operator A∗ : HA → H is A∗f(t) =

∫ 1

t
f(s)ds

while the self-adjoint operator A∗A : H → H is A∗Ah(t) =
∫ 1

t

(∫ s
0
h(τ)dτ

)
ds.

The singular values and right-singular functions of A are σk = 2
(2k−1)π

and φk(t) =√
2 cos t

σk
; k ∈ N.

The condition number is defined as the ratio of largest to smallest singular values.

However, in infinite dimensions is not a sufficient metric by which to measure ill-

posedness so we characterize the ill-posedness of the problem in terms of the decay

rate of its singular values. As in the discrete case, it is clear that small singular values

(relative to σ1) will disproportionately amplify the contribution from corresponding

singular vectors or functions. If there is noise in the data, this too will be amplified,

perhaps to an unacceptable level.

2.2. Tikhonov Regularization

The negative effect decaying singular values have on the parameter estimates in an ill-

posed problem can be alleviated with regularization. In infinite dimensional Hilbert

spaces, a truncated SVE approximation to the operator A requires truncation of

infinitely many singular values, and we will not investigate this finite sum approximation.

Alternatively, we focus on Tikhonov regularization for compact operators as it relates

to joint inversion.

Tikhonov regularization changes the problem to one which has an invertible

operator, and therefore has a well-defined inverse solution. This invertible operator

will require us to consider the space HA × H = {(hA, h) : hA ∈ HA, h ∈ H} which is a

Hilbert space under the inner product

〈(hA,1, h1), (hA,2, h2)〉HA×H = 〈hA,1, hA,2〉HA
+ 〈h1, h2〉H .

The Tikhonov operator Tα : H → HA ×H is defined by

Tαh = (Ah, αh)

and we minimize

‖Tαh− (f, 0)‖2
HA×H = ‖Ah− f‖2

HA
+ α2 ‖h‖2

H .

Theorem 2.2 Suppose α > 0. Then R(Tα) is closed and N (Tα) is trivial. Therefore

Tαh = (f, 0) has a unique least squares solution for all f ∈ HA, [11].
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Proof. Consider the normal equation for this problem:

T ∗Th = T ∗(f, 0)

T ∗(Ah, αh) = T ∗(f, 0)

A∗Ah+ α2h = A∗f + α · 0
(A∗A+ α2I)h = A∗f.

For appropriate choice of α (A∗A+α2I) is invertible with a bounded inverse. Therefore

a unique solution to the normal equations exists.

�
Tikhonov regularization replaces the not necessarily invertible operator A∗A with

(A∗A+α2I) in the normal equations. The generalized inverse operator for the modified

least squares problem therefore can be written

A†α = (A∗A+ αI)−1A∗ =
∞∑
k=1

σk
σ2
k + α

φk ⊗ ψk.

Since
σk

σ2
k + α

→ 0, as k →∞

the operator A†α is bounded, and inverse solutions depend continuously on f .

Solution estimates found with this generalized operator depend strongly on

the regularization parameter α, which restricts the space of acceptable solutions.

Alternatively, joint inversion uses additional physics and the corresponding observations

to restrict the solution space. This allows more physically relevant solutions and restricts

the parameters to ones that satisfy two or more mathematical models. Joint inversion

does not contain a parameter such as α that guarantees a well posed problem, but it

will more likely require less regularization. This is explained in detail in Section 3.

3. Joint Inversion

Joint inversion minimizes

‖Ah− d1‖2
HA

+ ‖Bh− d2‖2
HB

= ‖Ch− (d1, d2)‖2
HA×HB

.

It maps the Cartesian product of two Hilbert spaces A and B with physical spaces HA

and HB, respectively. HB can be considered as an alternative to the mathematically

defined space H in Tikhonov regularization. Analogous to stacking matrices, the space

defined by joint inversion of linear operators A and B consists of all ordered pairs in

HA ×HB.

Example: Define the Hilbert spaces H = L2 (0, 2π), and HA = HB = R. Define the

compact operators A : H → HA and B : H → HB as

Ah =

∫ 2π

0

h(y)δ(y − 5)dy, Bh =

∫ 2π

0

h(y)δ(y − 7)dy.
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Then C : H → HA ⊕HB is defined as

Ch = (Ah,Bh) =

(∫ 2π

0

h(y)δ(y − 5)dy,

∫ 2π

0

h(y)δ(y − 7)dy

)
.

3.1. Singular Value Expansion

As mentioned previously, the decay rate of the singular values provide a metric for the

ill-posedness of an operator. With A,B, and C defined as above, we can compare the

singular value decay rates of the three operators to see if the joint operator yielded

any improvement. For the purposes of visualization, it is helpful to think of the C as

defining a parametric curve in the space HA ⊕HB.

Theorem 3.1 Let A : H → HA and B : H → HB be compact operators from the Hilbert

space H to the Hilbert spaces HA and HB respectively. Then C : H → HA ⊕ HB with

Ch = (Ah,Bh) admits a singular value expansion for all h ∈ H.

Proof. The Hilbert space direct sum

HA ⊕HB = {(hA, hB) : hA ∈ HA, hB ∈ HB} .

admits the inner product 〈·, ·〉 on HA ⊕HB with

〈(hA,1, hB,1) , (hA,2, hB,2)〉HA⊕HB
= 〈hA,1, hA,2〉HA

+ 〈hB,1, hB,2〉HB
.

C is thus a compact operator between two Hilbert spaces [19] and admits a SVE.

�

Lemma 3.2 The family of singular function, singular value pairs {(σk, φk)}∞k=1 that

satisfy

C∗Cφk = σ2
kφk

also satisfy

σ2
kφk = A∗Aφk +B∗Bφk.

Proof. The adjoint C∗ : HA ⊕HB → H is given by

C∗ (hA, hB) = A∗hA +B∗hB.

Expanding we get

σ2
kφk = C∗Cφk

= C∗ (Aφk, Bφk)

= A∗Aφk +B∗Bφk.

�
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Example: Let A and B be Green’s function operators

Ah =

∫
Ω

KAh and, Bh =

∫
Ω

KBh,

associated with the differential operations LA and LB respectively. Then (2) is an

integral equation and it can be transformed to an equivalent ODE. In particular,

L∗A
(
σ2φ
)

= L∗A (A∗Aφ+B∗Bφ) ,

and

LA

(
σ2L∗Aφ

)
= LA (Aφ+ L∗AB

∗Bφ) ,

or

σ2LAL
∗
Aφ = φ+ LAL

∗
AB
∗Bφ.

If LAL
∗
A and LBL

∗
B commute and we apply L∗B and LB in the same manner we

eliminate all integrals and obtain and ODE in φ:

σ2 (LBL
∗
BLAL

∗
A)φ = (LBL

∗
B + LAL

∗
A)φ.

The approach in this example to finding the singular value, singular function pairs

can be challenging. It produces an ODE with much higher order than that of the

given differential operators LA or LB, and introduces many more boundary conditions.

Alternatively, we suggest using a Galerkin method to approximate the singular values

as described in the next section.

3.2. Galerkin Method

The singular value expansion of an individual integral kernel KA(s, t) defined over

Ωs × Ωt, such as a Green’s function, can be approximated using the Galerkin method.

It has been shown that the singular values derived using the Galerkin method converge

to the true singular values [14, 20]. Here, we extend the method to joint operators.

The idea of the Galerkin method is to approximate the integral operator A with an

integral operator whose kernel is degenerate. We accomplish this by restricting φ and ψ

to a the span of finitely many, n, orthonormal basis functions {qi(s)}ni=1 and {pj(t)}nj=1

for L2(Ωs) and L2(Ωt) respectively.

The matrix A(n) with entries a
(n)
ij approximates the operator A, and is defined by

a
(n)
ij = 〈qAi , ApA

j 〉
= 〈qAi , 〈KA, p

A

j 〉〉

=

∫
Ωs

∫
Ωt

qAi (s)KA(s, t)pA

j (t)dtds. (2)

The SVDA(n) is denoted U
(n)
A Σ

(n)
A

(
V

(n)
A

)T
with Σ

(n)
A = diag

(
σ1(A(n)), σ2(A(n)), . . . σn(A(n))

)
containing the discrete singular values σk(A

(n)) which approximate the continuous sin-

gular values σk(A).
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Definition 3.1 The singular values of an integral operator A with a real, square

integrable kernel K are the stationary values of the functional

F [p, q] =
〈q,Kp〉
‖p‖‖q‖

,

with the corresponding left and right singular functions given by p/‖p‖ and q/‖q‖
respectively.

The singular values of the degenerate kernel

K̃A =
n∑
i=1

n∑
j=1

a
(n)
ij q

A

i (s)pA

j (t)

are the stationary values of

F̃A[φ, ψ] =
〈qA, K̃Ap

A〉
‖pA‖‖qA‖

.

Using the discretization

pA(t) =
n∑
i=1

yA

i p
A

i (t) and qA(s) =
n∑
i=1

zA

i q
A

i (s)

the stationary values of F̃A are those of

GA[yA, zA] =
(zA)TA(n)yA

‖yA‖‖zA‖

which are also the singular values of A [14].

Theorem 3.3 Let C(n) be the matrix with entries c
(n)
ij that approximate the operator C

using the Galerkin method, then σk(C
(n)) ≤ σk(C

(n+1)) ≤ σi(C), k = 1, 2, . . . n.

Proof. The basis functions {pA
k}ni=1 and {qAk }ni=1 are orthonormal, and the singular

values σk(A
(n)) and σk(A

(n+1)) are the stationary values of

FA[pA, qA] =
〈qA, KApA〉
‖pA‖‖qA‖

,

restricted to n-dimensional and n+1-dimensional function subspaces respectively. Thus

the approximate singular values σk(A
(n)), where n is the number of basis functions, are

increasingly (with n) better approximations to the true singular values σk(A). A similar

statement holds for σk(B
(n)) and σk(B

(n+1)) with basis functions {pB
k }ni=1 and {qBk }ni=1,

and functional FB.

The kernel of the direct sum integral operator C = A ⊕ B is KA ⊕KB [12]. Thus

the singular values of the joint operator C are the stationary values of the functional

FC[pA, qA, pB, qB] =

(
〈qA, KApA〉
‖pA‖‖qA‖

,
〈qB, KBpB〉
‖pB‖‖qB‖

)
.
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The singular values of the discrete joint operator C(n) are the stationary values of the

functional

GC[yA, zA, yB, zB] =

(
(zA)TA(n)yA

‖yA‖‖zA‖
,
(zB)TB(n)yB

‖yB‖‖zB‖

)
,

which are also the singular values of C. Thus the approximate singular values σk(C
(n)),

where n is the number of basis functions, are increasingly (with n) better approximations

to the true singular values σk(C).

�

If the discretizations A(n) and B(n) are stacked to form
[
C(n)

]
=

[
A(n)

B(n)

]
we get

the following result.

Theorem 3.4 Define(
∆

(n)
C

)2

= ‖KA ⊕KB‖2 −

∣∣∣∣∣
∣∣∣∣∣
[
A(n)

B(n)

]∣∣∣∣∣
∣∣∣∣∣
2

F

=
∞∑
k=1

σi(C)2 −
n∑
k=1

σi(
[
C(n)

]
)2.

Then
(

∆
(n)
C

)2

=
(

∆
(n)
A

)2

+
(

∆
(n)
B

)2

, i.e. the square of the joint error is the sum of

squares of the individual errors. Thus if limn→∞

(
∆

(n)
A

)2

= 0 and limn→∞

(
∆

(n)
B

)2

= 0.

Proof. (
∆

(n)
C

)2

= 〈KA ⊕KB, KA ⊕KB〉 −
[
‖A(n)‖2

F + ‖B(n)‖2
F

]
= 〈KA, KA〉+ 〈KB, KB〉 − ‖A(n)‖2

F − ‖B(n)‖2
F

= ‖KA‖2 − ‖A(n)‖2
F + ‖KB‖2 − ‖B(n)‖2

F

=
(

∆
(n)
A

)2

+
(

∆
(n)
B

)2

.

�
This says that if we stack the Galerkin approximations of the individual operators, as

it typically done in a discrete joint inversion, the error in the approximation to the

singular values of the joint operator converges with n if the errors in the singular values

approximations of the individual operators to go zero.

3.3. Self Adjoint Operators

If the operator A is self-adjoint, then 〈Av,w〉 = 〈v,Aw〉 for all v and w. This means

the singular functions are the eigenfunctions of the operator i.e. Aφk = σkφk.

Lemma 3.5 Let A be a self-adjoint, compact operator, then A(n) = Σ(n) where A(n)

is formed by the Galerkin method and Σ(n) is diagonal with entries σi(A
(n)) that

approximate the singular values σi(A).
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Proof. Since A is self-adjoint, in the Galerkin method use orthonormal bases equal

to the eigenfunctions φk to form A(n):

a
(n)
ij = 〈φi, Aφj〉 = σi〈φi, φj〉

=

{
σi i = j

0 i 6= j
.

�
When joint inversion involves self-adjoint operators, we can form the discrete singular

values for the joint stacked operator directly from the individual operators as shown in

the following theorem.

Theorem 3.6 If A and B are compact self adjoint operators, and σk(A
(n)) and σk(B

(n))

are discrete approximations of the singular values of A and B, respectively, then the

discrete approximation of the singular values of the joint operator C are

σk(
[
C(n)

]
) =

√
σk(A(n))2 + σk(B(n))2.

Proof. Since A and B are self-adjoint, the Galerkin method produces the matrix of

approximate singular values

A(n) = Σ
(n)
A and B(n) = Σ

(n)
B .

The joint operator
[
C(n)

]
is thus[

A(n)

B(n)

]
=

[
Σ

(n)
A

Σ
(n)
B

]
.

The singular values of
[
C(n)

]
are the square roots of the eigenvalues of

([
C(n)

])T [
C(n)

]
=
[
Σ

(n)
A Σ

(n)
B

] [ Σ
(n)
A

Σ
(n)
B

]
=

[(
Σ

(n)
A

)2

+
(

Σ
(n)
B

)2
]
.

�
It is very useful to have an analytical expression for the singular values of the joint

operator as a function of the singular values of the individual operators. It allows us to

determine the decay rate of the joint operator before the joint inversion and characterize

the joint problem as as mildly, moderately or severely ill-conditioned.

Corollary 3.7 The characterization of the ill-conditioning (i.e. mild, moderate or

severe) of the discrete stacked joint problem
[
C(n)

]
is the same as that of the least

ill-posed problem A or B, as k →∞. In this case, the conditioning of the joint problem

will never be worse than that of the individual problems.

Proof. We show this by considering different cases for the decay rates of the singular

values of A(n) and B(n) and applying Theorem 3.6. A problem is mildly or moderately

ill-conditioned if the singular values σk decay like O(k−q) and severely ill-conditioned if

they decay like O(e−qk) for q > 0 [10].
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(i) If σk(A
(n)) = O(k−qA) and σk(B

(n)) = O(k−qB) then

σk(
[
C(n)

]
)2 ≤ cAk

−2qA + cBk
−2qB ≤ ck−2q

where q = min(qA, qB).

(ii) If σk(A
(n)) = O(e−qAk) and σk(B

(n)) = O(e−qBk) then

σk(
[
C(n)

]
)2 ≤ cAe

−2qAk + cBe
−2qBk ≤ ce−2qk

where q = min(qA, qB).

(iii) If σk(A
(n)) = O(k−qA) and σk(B

(n)) = O(e−qBk) then

σk(
[
C(n)

]
)2 ≤ cAk

−2qA + cBe
−2qBk ≤ ck−2qA .

The last inequality holds because as k →∞ qA ≤ qB
k

ln(k)
for any qA or qB and hence

e−qBk ≤ k−qA .

�

Corollary 3.8 For a finite set of singular values (e.g. the truncated SVD) if σk(A
(n)) =

O(k−qA) and σk(B
(n)) = O(e−qBk) with qB ≤ e1qA there is k for which k−qA ≤ e−qBk and

hence the conditioning of the joint problem
[
C(n)

]
will be worse than the conditioning of

the better posed problem A.

Proof. If qB ≤ ln(k)
k
qA then there is k for which k−qA ≤ e−qBk and

σk(
[
C(n)

]
)2 ≤ cAk

−2qA + cBe
−2qBk ≤ ce−2qBk.

The result follows with qB ≤ ln(k)
k
qA ≤ e1qA.

�
While combining multiple data sets in an inversion should produce a better

conditioned problem most of the time, a severely posed problem may degrade a mildly

or moderately ill-posed problem if the singular values are truncated in a joint inversion.

4. Green’s Functions Example

We show results from combining data from two distinct boundary value problems

−u′′(x) = h(x), u(0) = u(π) = 0

u′′(x) + b2u(x) = h(x), u(0) = u(π) = 0, b /∈ Z

with LAu = −u′′ and LBu = u′′ + b2u. The Green’s functions for both differential

operators are given in [21]. In particular for A : L2[0, π]→ L2[0, π] we have

Ah(x) =

∫ π

0

KA (x, y)h(y)dy,

with

KA =

{
1
π

(π − x) y, 0 ≤ y ≤ x ≤ π,
1
π

(π − y)x, 0 ≤ x ≤ y ≤ π
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and Ah(x) = u(x). Similarly for B : L2[0, π]→ L2[0, π] we have

Bh(x) =

∫ π

0

KB (x, y)h(y)dy,

with

KB =

{
− sin(by) sin[b(π−x)]

b sin(bπ)
, 0 ≤ y ≤ x ≤ π

− sin(bx) sin[b(π−y)]
b sin(bπ)

, 0 ≤ x ≤ y ≤ π

and Bh(x) = u(x).

A is a self-adjoint compact operator, it admits an eigenvalue expansion and the

singular values of A are the absolute value of its eigenvalues. The equation Aφ = λφ is

equivalent to ∫ π

0

KA (x, y)φ(y)dy = λφ (x)

with φ (0) = 0 and φ (π) = 0. Differentiating both sides twice with respect to x and

applying the Leibniz integral rule gives

λφ′′(x) =
d

dx

(∫ x

0

− 1

π
yφ(y)dy +

∫ π

x

1

π
(π − y)φ(y)dy

)
= − 1

π
xφ(x)− 1

π
(π − x)φ(x)

= − φ(x).

This yields the eigenvalue-eigenfunction pairs (λk, φk(x)):

φk(x) =

√
2

π
sin (kx) , λk =

1

k2
k = 1, 2, . . . ,∞.

The singular values for A are thus σk(A) = 1
k2

for k = 1, 2, . . . ,∞. This means the decay

rate of the singular values are O(k−2) and the problem is moderately ill-posed [10].

B is also a self-adjoint operator and its eigenvalues are

λk =
1

k2 + b2
, for k = 0, 1, . . . ,∞.

The singular values for B are thus σk(B) = 1
k2+b2

. We omit the eigenfunctions since the

decay rate of the singular values is the focus of this work. The singular values have the

same decay rate as that for A and this problem is also moderately ill-posed.

4.1. Joint Singular Values

The joint operator C : L2[0, π]→ L2[0, π]⊕ L2[0, π] is

Ch(x) =

∫ π

0

KA (x, y)h(y)dy ⊕
∫ π

0

KB (x, y)h(y)dy.

If we were to use the same approach to finding the singular values of A and B to now

find the joint singular values of C, the result would be a linear constant coefficient ODE

with a eighth order characteristic polynomial. Alternatively we use the Galerkin method

presented in Section 3.1.
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The discretizations A(n) and B(n) approximate the operators A and B with

orthonormal bases. Since A and B are self-adjoint we use the eigenfunction bases and

apply Theorem 3.6. The singular values of the stacked joint operator are thus

σk(
[
C(n)

]
) =

√(
1

k2

)2

+

(
1

k2 + b2

)2

, k = 1, . . . , n.

This shows that the moderately ill-posed problems A and B are combined to form a

joint moderately ill-posed problem. While the overall conditioning of the problem has

not changed through joint inversion, we will quantify the benefits of the joint problem by

determining the number singular values in a truncated singular value expansion (TSVD)

for each problem.

The TSVD is a regularization method whereby small singular values are discarded

so that the problem is well-conditioned. However, information is lost when singular

values are discarded and therefore we wish to keep as many as possible. Let the number

of singular values in the TSVD be denoted by r with r chosen by requiring that σr ≥ T

for small T . The further T is from zero the better conditioned the problem, however

the solution will also be less accurate. If the number of singular values in the TSVD for

A are denoted by rA, then rA ≤
√
T−1. Similarly, the number of singular values in the

TSVD for B satisfy rB ≤
√
T−1 − b2 with T−1 > b2.

For joint inversion using
[
C(n)

]
we have that the number of singular values rC satisfy

1

r4
C

+
1

(r2
C + b2)2

≥ T 2.

Solving we get

rC =

√√
4
√
T 2b4 + 1 + T 2b4 + 4− Tb2

2T
.

Now for T � 1 if b ≈ 1 we approximate
√
T 2b4 + 1 ≈

√
1 and√

4
√
T 2b4 + 1 + T 2b4 + 4 ≈

√
8 so that rC ≈

√√
8−Tb2
2T

. The percent increase in number

of singular values we keep with jointly inverting A and B rather than just A is

rC
rA

=

√√
8− Tb2

2
≈

√√
8

2
≈ 19%.

A similar statement can be made for jointly inverting A and B rather than just B.

The singular values for A(n), B(n) and
[
C(n)

]
with n = 35 are given in Figure 4.1.

When b = 1.8 there is not much difference between the singular values of A(n) and B(n),

which is to be expected. Truncation often occurs about the point where the singular

values stop changing and we’ve indicated two values at which to truncate, one on the

left column of the Figure and another on the right column.

In Table 1 we give the number of singular values that are kept after truncating. For

b = 1.8 the TSVD for A(n) and B(n) results in the same number of singular values, for

both values of truncation. The number of singular values kept for TSVD with the same
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Figure 1. Singular values for the individual inversions with A and B and joint

inversion C for b = 1.8 (top row) and b = 15.2 (bottom row). Two different thresholds

for truncation are also represented, T = 10−2.5 (left) and T = 10−3 (right).
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threshold increases with joint inversion. This increase in number of singular values is

23% when singular values are truncated at 10−2.5 and 19% when truncated at 10−3.0.

When b = 15.2 the singular values of B change behavior from those of A. The

singular values of B drop off more quickly and hence fewer are kept in a TSVD. In

Figure 4.1 the singular values σk start at k = 7 in all cases to make the graph more

readable.

We see in Table 1 that for b = 15.2 and with a lower threshold, only 9 of the singular

values are kept in the TSVD for B. In a joint inversion with A this number is doubled
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Table 1. Number of singular values in TSVD for A(n) (rA), B(n) (rB) and
[
C(n)

]
(rC). The last column gives the increase in number of singular values that are kept in

the TSVD for the given threshold T .

Increase in number of σ

Threshold T rA rB rC kept for C over (A,B)

b=1.8

10−2.5 17 17 21 (23%,23%)

10−3.0 31 31 37 (19%,19%)

b=15.2

10−2.5 17 9 18 (5%,100%)

10−3.0 31 27 36 (16%,33%)

and hence the increase in number of values kept with joint inversion over those kept in B

is 100%. The increase in the number of singular values over those in A is much smaller

and we see that data from this model better informs the joint inversion. For a lower

threshold with b = 15.2 more singular values are kept in TSVD and the contributions

from A and B are better balanced. This could be at the cost of amplifying noise, and

the conclusion of which threshold to use in the TSVD is done the context of the noise

of the data.

5. Conclusions and Future Work

We have extended singular value analysis of discrete joint inversion to joint inversion

of compact linear operators. The analogous operation to stacking discrete matrices is

the direct sum of operators and we give results regarding the singular value expansion

of the joint operator. Joint inversion can be computationally expensive and in some

instances it is not clear if it improves inversions of individual operators. Therefore, we

quantify improvement in jointly inverting two operators by comparing the decay rate of

the singular values of the joint operator to those from the individual operators.

Tikhonov regularization with compact linear operators is also the direct sum of

operators. The regularization parameter can always be chosen so that an ill-posed

problem is made well-posed. However, the parameter restricts the solution space in

an ad-hoc manner. Alternatively, joint inversion restricts the solution space using

additional data. We suggest analyzing the singular values of joint operators to determine

which types of data are best to combine before data are collected. This analysis

effectively determines which data “regularize” each other and can inform experimental

design.

We also developed a method for approximating the singular values of the joint

compact operator. The infinitely many singular values are approximated with a Galerkin

method. For self-adjoint operators we obtained an analytic formula for the joint operator

as a function of the singular values of the individual operators. We calculated singular
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values arising from joint inversion of Green’s function solutions of two simple ordinary

differential equations and compared them to the singular values of the individual

operators. In this example the conditioning of the joint problem is not significantly

better that that of the best conditioned problem. However, the conditioning of both

moderately ill-posed problems are improved through joint inversion. These conclusions

confirm what was proved as the typical case of joint inversion of self adjoint operators.
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