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Abstract

We implement an approach for the accurate assimilation of Lagrangian data into regional
general ocean circulation models. The forward model is expressed in Lagrangian coordinates
and simulated float data are incorporated into the model via four dimensional variational
data assimilation. We show that forward solutions computed in Lagrangian coordinates are
reliable for time periods of up to 100 days with phase speeds of 1 m/s and deformation
radius of 35 km. The position and depth of simulated floats are assimilated into the viscous,
Lagrangian shallow water equations. The weights for the errors in the model and data are
varied and the assimilation results react appropriately. We show the effect of different spatial
and temporal samplings of float data on all Lagrangian trajectories in the computational
domain. At the end of the assimilation period, results from the Lagrangian shallow water
equations could be interpolated and used as initial and boundary conditions in an Eulerian

general ocean circulation model.
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1 Introduction

A vast amount of data are collected from floats and drifters in the ocean. For example, in 2002,
the international ARGO project has approximately 550 floats in the global ocean, with the
ultimate goal of having 3000 floats collecting temperature, salinity and velocity measurements.
The project includes drifters that remain at the surface and continuously transmit data to ARGO
satellites, and near-surface drifters that transmit their data every few days. In addition, there
are sub-surface floats such as ALACE and RAFOS floats. ALACE floats repeatedly surface,
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while RAFOS floats surface only at the end of their deployment. Data from these floats and
drifters are all recorded in a Lagrangian reference frame.

These Lagrangian data enhance existing observing systems by expanding spatial and tempo-
ral coverage, however, the ocean is still underrepresented. General circulation models can fill in
the gaps, but there are uncertainties in these models so taking observations directly into them
produces poor quality forecasts, even though data represent the ‘true’ state of ocean circulation
within measurement errors.

Data assimilation is a way to accurately extract information from observations, and combine
them with a model that contains information about dynamical processes and their interactions.
In this work variational assimilation is applied to simulated float data and the viscous, shallow
water equations in Lagrangian coordinates.

There are two major difficulties associated with assimilating Lagrangian data into regional
general circulation models, and using Lagrangian coordinates remedies them both. The first
problem is that most models are written in Eulerian coordinates, and Lagrangian data must
be interpolated to a fixed grid, which introduces new errors in the data. In addition, nonlinear
measurement functionals must be used for data assimilation.

The second problem is that uniqueness of solutions and continuous dependence upon inputs
of the primitive equations in an open ocean domain is not guaranteed [13]. The problem arises
whenever the particle speeds lie within the range of the phase speeds of the hydrostatic internal
gravity waves. Different boundary conditions must be applied when the flow is subcritical with
respect to the graver, faster modes versus when the flow is supercritical with respect to the
higher, slower modes. In numerical models appropriate boundary conditions can be specified
point wise in the vertical direction, but this is not practical. Alternatively, it was shown by
Bennett and Chua [2] that uniqueness of solutions can be guaranteed in the open ocean if the
domain moves with the flow. In a comoving domain, vorticity is conserved on fluid particles,
and it cannot advect into or out of the domain. Divergence can radiate into or out of the domain
as gravity wave propagation, thus every mode is subcritical in the reference frame of the moving
boundary. The result is that in the vertical, the boundary conditions do not need to be applied
mode by mode in a comoving domain.

Lagrangian coordinates are not the only way to have boundaries that move with the flow in
an open domain. Popular front tracking methods such as the level set method [14] and volume
of fluid [12] do not resolve the ill-posedness of the primitive equations in the open ocean because
these methods use an Eulerian domain, and a moving boundary is only tracked. On the other

hand, unified coordinates [17] is an interesting approach because it can be Eulerian, Lagrangian



or somewhere in between depending on the choice of a parameter. The authors suggest that a
purely Lagrangian domain is not a good choice, and they suggest following ‘pseudo-particles’
which are somewhat slower than particles that move with the flow. Again, in this instance the
ill-posedness in the open ocean is not resolved since the domain does not move with the flow, but
at a slower speed. The arbitrary Lagrangian Eulerian method, (ALE) [9], temporarily computes
in a domain that moves with the flow but at some arbitrary point in time, the domain is re-
gridded and becomes Eulerian. If one chooses to re-grid the domain at nearly every time-step,
the approach is then semi-Lagrangian [15], which is a method often used in atmospheric models
to allow longer time steps for integration.

In this work, we choose to use Lagrangian coordinates and follow floats (or particles) in a
purely Lagrangian manner. This allows us to ensure uniqueness of solutions and continuous
dependence upon inputs of the primitive equation model in the open ocean, allows linear mea-
surement functionals for data assimilation, and results in a well posed inverse problem. In [10]
we tested the feasibility of this approach, and we are able to assimilate simulated data into
the inviscid shallow water equations in Lagrangian coordinates for a few hours. Here, we add
friction to the model and show more extensive results for much longer time periods.

Difficulties with assimilating data into a model written in Lagrangian coordinates parallel
difficulties that arise when collecting data from floats or drifters in the ocean. One is that the
particles in the model (or floats and drifters) may clump together in areas with a lot of activity
leaving some areas void. However, this situation may be advantageous because the majority of
the data or information from the model are in areas with the majority of the activity. Obtaining
more information in areas with the majority of the activity is often sought numerically by using
adaptive mesh refinement [3]. Another difficulty with using Lagrangian coordinates is that the
model is highly nonlinear. As shown in Section 2, we find that in the open ocean, the flow can
be simulated for over 3 months. This not only allows the Lagrangian shallow water equations
to be used for simulation of near-surface and mid-ocean floats which have integral time scales of
days and weeks, but also deep-ocean floats which have time scales of months. Lastly, Lagrangian
motion exhibits chaos in the sense that if one drops two floats in (virtually) the same location,
they can have drastically different trajectories. We also find that solutions of the Lagrangian
model can be different depending on the initial conditions or choice of numerical method.

Lagrangian data have been combined with Eulerian models in [8, 11, 16]. In [16] they do
a quantitative comparison of Eulerian velocity fields from the 24-level Primitive Ocean Model
(POM) with drogued drifter position data using geometric orthogonal functions. They use this

spectral approach to reconstruct Eulerian velocity fields with sparse Lagrangian data. They



demonstrate that trajectories yielded from the Eulerian velocity fields with sparse Lagrangian
data are more accurate than those yielded from the model velocity fields.

In [8] they use variational data assimilation to combine an Eulerian reduced gravity model
with drifting buoys. They minimize a cost functional which measures the distance between model
simulated drifters and observed drifters, with the Eulerian model added as a strong contraint. In
addition, they treat the mean upper layer thickness as a parameter in the optimzation process.
Their main results include finding an optimal upper layer thickness so that the model can fit the
data. In this work, we also show through variational data assimilation that the model can fit the
data. However, we accomplish this not by treating upper layer thickness as a parameter, but by
minimzing a cost function that not only measures the distance between model simulated floats
and observed drifters, but in addition minimizes the weighted error in the model and initial
conditions.

More recently, in [11] they use optimal interpolation to combine an Eulerian velocity field
from a quasi-geostrophic model with Lagrangian data. There, they quantify the effectiveness of
assimilating Lagrangian data by showing that the optimal time interval between measurements
is 5-15 hours for drifters at the surface, and 1.5-2 days for the subsurface.

In Section 2 we derive the Lagrangian form of the viscid, shallow water equations in spherical
polar coordinates on a flat earth. In Section 3 we define linear Picard iterations on the model
and show that they can be used to approximate the solution of the nonlinear model. In Section 4

we formulate the inverse model and assimilate data for 13 days. In Section 5 we give conclusions.

2 Lagrangian Shallow Water Model

2.1 Formulation of the Model

The primitive equations are commonly used for general ocean circulation, however, we will use
a prototype for the primitive equations: the shallow water equations. Essentially, the shallow
water equations are one layer of the primitive equations that follow a surface of constant density.

In an Eulerian domain, the inviscid shallow water equations in spherical coordinates are
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and the corresponding continuity equation is
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The longitude is A, the latitude is 8, u is the velocity in the Eastern direction, v is the velocity
in the Northern direction, h is the depth over a flat bottom, f is the Coriolis parameter, r is

the radius of the earth, and g is the gravitational acceleration.

Regardless of the coordinate system, % (with u = [u v]) denotes differentiation following
the motion of the fluid. In Eulerian coordinates
Du 0Ou
Ft = E +u- Vu,

and we solve the shallow water equations for u(X,0,t), v(X,8,t), and h(A,0,t) at time ¢ where
the latitude X, and longitude 6 are fixed.

In Lagrangian coordinates
Du Ou

Dt ot’

which is a much simpler expression for advection of momentum. However, the pressure gradient
term (i.e. the right hand side of (1)-(2)) becomes highly nonlinear. In order to write (1)-(3) in
Lagrangian coordinates, consider that the velocity of a particle (or float) is solely a function of its
initial position. Denote the initial longitude and latitude of a particle by a and [ respectively,
and its subsequent longitude by A(«,3,1), latitude by 6(«, 5,t), and depth by h(e, 5,t). To
convert from Eulerian coordinates u(A,8,t),v(A,0,t), and h()A,0,t) to Lagrangian coordinates
AMa, B,1),0(c, B, 1), and h(w, B,t) use the identities

00
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The momentum equations for the shallow water model in Lagrangian coordinates are
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The continuity equation (3) in Lagrangian coordinates takes on a simpler form:

%(h cos6J) =0, (7)



which can be integrated exactly.

Given the particles’ initial positions «, B, initial velocities u, v and initial depths A, with
appropriate boundary conditions (see below), we solve the Lagrangian shallow water model
(5)-(7) for the particles’ position A(«, 8,t) 0(«, 5,t) and depth h(a,3,t) at time ¢. Solutions
in Lagrangian coordinates are illustrated here by plotting (A(ay, 8;,t),0(, B;,t)) for all ¢, i.e.
by plotting one or more of the particles’ trajectories in the computational domain with initial
positions («;, B;).

Boundary conditions that result in a well-posed initial boundary value problem for the invis-
cid Lagrangian shallow water model are specification of (i) the longitude X at the East and West
boundaries, (ii) the latitude # at the North and South boundaries, and (iii) the depth h at all
four boundaries [2]. Even though there is a complete mathematical understanding of the initial
boundary value problem in an open domain, the numerical implementation of these boundary
conditions is a challenge. These boundaries are artificial because general ocean circulation con-
tinues across and beyond these open boundaries. In order accommodate information trying to
leave the domain absorbing or non-reflecting boundary conditions must be used to ensure that
the information is not reflected back into the domain at the artificial interface [6]. In long in-
tegrations the Lagrangian shallow water equations are more sensitive to these reflections than
the Eulerian form, due to their highly nonlinear form. In addition, the exact solution of the test
problem used here is unknown, so boundary values are only a rough approximation and may be
quite different from values in the interior. This makes reflections even worse. Future work will
address absorbing boundary conditions for the Lagrangian shallow water equations.

In these experiments we use periodic boundary conditions which will give us a good under-
standing of Lagrangian solutions in the interior of the domain. Periodic boundary conditions in
an open domain necessitate modeling on a flat Earth. This is a reasonable assumption for the
region modeled here, since the domain is not that large. Let 6y be the southern-most value of 6

in the domain of interest, then the change in coordinates (4) simplifies to

e 0
U = T COS 0 v=ro

Adding friction to the momentum equations for the shallow water model in Eulerian coordi-
nates only amounts to adding KV?u to (1) and kV2v to (2) where & is the viscosity coefficient.
In Lagrangian coordinates friction is not as straightforward, but on a flat Earth it is possible to
use the full Lagrangian form. The viscous term added to (5) is

1 1 0(L,0) | 1 ;00\ M)
r2cos200J 8(04,ﬁ)+r_2J (o, B) }’ )

KT cos 8 {

6



while the viscous term added to (6) is
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2.2 Numerical Results from the Forward Viscid Lagrangian Shallow Water
Model

We choose to model a region in the North Atlantic extending from from 38° North to 40° North
and from 38° West to 40° West. In this region, the deformation radius is approximately 35
km, and phase speeds ¢ are 1 m/s [4]. The test problem has initial conditions which are a
combination of plane waves of small amplitude, or Sverdrup waves [7]. This combination solves

the linear form of (1)-(3) exactly, and is given by

u = —2sin(lf — wt + M)ngfIfQ [rcos&w sin(kX + L) + %f cos(kX + L)] (10)
v = 2cos(l0 —wt+ M) 2gH [lw cos(kA + L) + Lf sin(kX + L)] (11)
w2 —f2 |r 7 cos 6
h = H+2cos(kA+ L) cos(l0 — wt + M)H, (12)
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Here H = ¢?/g is the mean depth, H= eH, e =0.01, and f = 2Q2sin# is the Coriolis parameter.

Since the deformation radius is 35 km, the longitudinal and latitudinal wave numbers are k =
I = 180 per radian of longitude and latitude. In addition, to have spatially periodic initial
conditions in the interval of interest L = 40w and M = —38w. Lastly, the viscosity coefficient s

in (8) and (9) was chosen so that the grid Reynolds number is equal to 1, i.e.
Kk = Aaec.

Forward model experiments were run with second order finite differences in space and time
for 100 days. The grid spacing is 0.083°, with 24 x 24 particles in the domain, and constant

time steps of 75 seconds. The depths of the particles remain fairly constant at approximately



Lagrangian velocity field at day 100
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Figure 1: Lagrangian velocity field (top) and Eulerian velocity field (bottom) at day 100.



0.10 m, so graphs of h are not shown here. The solution of the viscous Eulerian shallow water
equations was also computed in the same manner to validate the Lagrangian results.

The particle positions at day 100, calculated by the viscous Lagrangian shallow water equa-
tions, are used to calculate velocities on a Lagrangian grid and this velocity field is shown in
Figure 1. For comparison, the Eulerian velocity field at day 100 is also shown in Figure 1, and
it is seen by inspection that the flow is very similar to that in the the Lagrangian vector field.
The reliability of the solution on the Lagrangian grid at day 100 is further validated in Figure
2 where the three dimensional plot of the meridional and zonal velocities from the Lagrangian
and Eulerian calculations at day 100 are shown. The velocities from both methods at day 100
are uniformly smooth between 0.1 and —0.1 m/s.

Figures 1 and 2 are the usual way to view Eulerian solutions, but here we are interested in
Lagrangian solutions. Typically, the entire history of Lagrangian data are plotted as trajectories,
contrary to the vector field where only information at day 100 is plotted. Thus in Figures 3 and
4 we plot the 100 day trajectory solution from the Lagrangian shallow water equations. These
Figures are more detailed displays of the Lagrangian results in Figures 1 and 2. In Figure 3
the solution at all 24 x 24 grid points, i.e. on all 24 x 24 particles, is plotted and we see a
correlation to the vector field in Figure 1. Figure 4 is a closer view of the trajectories in Figure 3.
By looking more closely at the particles in Figure 4, we see that with the given initial conditions,
the particles are oscillating, drifting north, with the radius of their oscillations increasing.

Figures 1-4 show that stable solutions of the Lagrangian shallow water equations in this
region can be found for time periods of at least 100 days. Even though the scales here are
correct, without more realistic initial conditions we will not have realistic trajectory solutions
from the forward Lagrangian shallow water model. Thus in the following sections we describe the
process of using the Lagrangian shallow water equation to assimilate Lagrangian data. When
real data are used, this process can help give us realistic initial and boundary conditions for

general ocean circulation models.

3 Tangent Linear Model

Variational data assimilation, as described in [5], requires a linear forward model. We use
the tangent linear model, linearized about a previous iterate, and iterate it to get a nonlinear
approximation of the original model. In Appendix A this approach is first illustrated with the
Eulerian nonlinear one dimensional wave equation, and then the corresponding linear form for

the Lagrangian shallow water model is given.
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100 day trajectories

®» » » » » © © » ®» ® » » 5 > & & » & & = e » b »
®» » ®» ®» ®» ® © © © 6 ®» 6 » & & & & > o > > > > O
® © ® 6 6 6 0 0 & 06 06 0 & 0 06 0 0 0O > > 00 " O O
® 6 0 06 0 0 06 0 © 0 0 0 0 0 © 06 0 © ¢ 0 06 0 0 O
© 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 000006060 O
o 00 00 0 0 0 0 & 0 9 9O 3 OO I OFOEOCO0
@ @ 0 06 0 06 0 0 0 & ¢ ¢ ¢ @ O O O O O QO O O O O
@ @ & & & & & & & @ @ @ © @ O 9 T 9 © O O O O
@ @€ @ 6 0 0 6 @ O @ © ¢ ¢ ° T T T T O ®© ®© © @ o
® » o » o & & » » » » > ®» ®» & » » ® & » & & o
® o & o & > » > > > > > > > > > P " 6 0 o 0 0 0
® & 06 6 0 0 o > > 0 0 06 6 > 0 0 0 0 0 0 0 0 0
© 0606 0060606606 0600060 06 0 0660 0 0 0 0 0 0 O
9 0 000000000O0OOUOOOOCOO0 O OO0 OO0
® 9 9000000000000 O0O0O0CO0O OSSOSO
®@ © 0 0 000 0 00 0000 00 00 0 0 0 0 0
®@ © @ © © ¢ © 9 O © O @ O O O O O O & 0 & 9 o o
® @ ® e 9 e ° @ @ e e & &6 & & 8 9 8 o6 & o o s 3
o o) © <t N [e2] o) © <t N [e0]
¥ g9 o9 o9 o9 P ©U oK K w© X
o o o o o o o o
apniyeT

-39 -38.5 -38
Longitude

-39.5

~40

Figure 3: 100 day trajectories of 24 x 24 floats from forward model.
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The computational cost of calculating the Lagrangian tangent linear form versus the Eulerian
tangent linear form can be estimated by counting the number of dependent vairables in equations
(28)-(30) given in Appendix A, versus the number of dependent variables in the Eulerian tangent
linear form. In the Lagrangian form as 7, 7, and p range in (28)-(30) (and if we neglect the zero
coefficients) there are 27 dependent variables while in the Eulerian form there are 12 dependent
variables. Thus the Lagrangian form is more than twice as expensive as the Eulerian form.

Iterated solutions of the tangent linear form of the Lagrangian shallow water equations are
shown in Figure 5. The same initial conditions, (10)-(12), and periodic boundary conditions
that were used in the nonlinear experiments were also used here. However, the grid spacing was
increased to 0.50° and time steps to 220 seconds, resulting in 4 x 4 particles in the region. This
smaller grid was used in order to make these idealized experiments run in a reasonable amount
of time.

The nonlinear solution and the initial guess used as the zeroth iterate to start the iterations

on the tangent linear form differ in two ways:
1. The initial values of the position and depth differ by 0.04%.
2. The initial velocities differ by 2.0% in both the meridional and zonal directions.

Figure 5 shows the 25 day trajectories of four of the 4 x 4 particles. Plotted there for each
trajectory are the initial guesses used to start the tangent linear model (28)-(30) (i.e. the zeroth
iterate), the nonlinear (or ‘true’) trajectories, and the 2nd iterate. We see that the linear model
solution converges to the nonlinear model solution exactly after two iterations. The difference
between the nonlinear solution, and the second iteration of the linear model is negligible. The

behavior of these four particles is characteristic of the remaining particles in the domain.

4 Inverse Lagrangian Shallow Water Model

A detailed description of the data assimilation method can be found in [5]. In Appendix C we
describe in detail the formulation of the adjoint model using the notation in Appendix A.
The data assimilation method involves combining the linear model (28)-(30) with the fol-

lowing simulated float data from the ocean

di\n = A(aTTLaﬁmatm)
dfn = H(O‘maﬁmatm)
dfn = h’(ama B, tm)
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25 day trajectories
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nonlinear solution, initial guess and 2nd iterate.

where m = 1,..., K and there are 3K data. For example, if we monitor two floats, recording

their position and depth twice a day for two days K = 8, and there are M = 24 pieces of data.

It is assumed that the model, initial conditions, and data all contain error and we denote

these errors by f(,8,t), i(\,0), and €(), 0,1), respectively. Adding appropriate subscripts, this

implies the forward model is
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(15)

Since we replaced J ! with a term proportional to h (found by solving the continuity equation

exactly), we have assumed that there is no error in the equation for hA. The initial conditions
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are
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and we will use u!, v’, and A given in (10)-(12). Lastly, the boundary conditions are periodic,

and the data with error are

7L

d';\n = An(amwgmatm)‘l'ﬁ (19)
& = 0™(am,Bm,tm) + €& (20)
dl = h™(oum, By tm) + € (21)

In order to find the best fit of the model and data we hypothesize that the circulation fields
satisfy (13)-(21) within errors having specified covariances Wf; L er WZA , W19 , T/VZA , W'Zetl,
w;l, wy ! and w;l. The values for these covariances will be discussed in the section describing
the twin experiments. Now the best fit of the dynamics (13)-(18) and the data (19)-(21) is found
by minimizing the following penalty functional that describes the discrepancy between them:

Qe Bn

/dt/da/dﬁ{Wh IR+ Wy, (f3)%}

Bs
Q Bn
+ [ da [ {Wi @7 + W G+ Wi )2 + Wi, (357
Bs

Qo

-I-Z{w,\ )% + wo(el, )+w(fn)2}.

The equation for h, (15), is added to J as a strong constraint since we assumed (7) was exact
in the tangent linear approximation.

The calculus of variations is used to minimize J, and to find the best fit to the dynamics
and the data. The result of using the calculus of variations is the Euler-Lagrange equations: a
coupled two-point initial boundary value problem consisting of a set of backward and forward
equations, and they are given in Appendix C. The Euler-Lagrange equations are decoupled by
using the representer method, and the the details can be found in [1].

The notation in Appendices A-C allows straightforward calculation of the continuous ad-

joint equations from the tangent linear model. One only needs to determine the coefficients of
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the tangent linearization (13)-(15) for the particular model of interest and the Euler-Lagrange

equations will always be given by (31)-(43).

4.1 Twin Experiments

In this section we give results from identical twin experiments. In these experiments the La-
grangian shallow water model (13)-(18) is used to generate the Lagrangian data d)),, d% , and
d" . Then, under different conditions, this data is assimilated back into the Lagrangian shallow
water model. The best fit of the model and data is 5\, é, h and it is found by solving the
Euler-Lagrange equations (31)-(43) with the representer method [1].

We will determine in these twin experiments if the simulated Lagrangian data can be rec-
onciled with the Lagrangian shallow water model. This will be done by investigating the choice
of weights on the errors in the model, initial condition, and simulated float data. If we choose a
“large” weight on the model errors and a “small” weight on the data errors we would expect the
assimilated trajectories to roughly follow the data. This is the situations studied in experiment
1. If the situation were reversed, i.e. a “small” weight on the model errors and a “large” weight
on the data errors we would expect the assimilated trajectories to roughly behave as the forward
model predicts. This is the situation in experiment 2.

We will also study the effects of different spatial and temporal sampling of data. If the spatial
sampling is sparse we must rely heavily on the model. In experiment 1, however, we specified
“large” weights on the errors in the model and sparse spatial sampling. We would expect, and
we verify, that the trajectories where there are no data give poor representations of the true
ocean when the data is sparse and the model error is large. Thus if we specify large errors in
the model, the spatial sampling should be dense. On the other hand, if the spatial sampling is
sparse, we must rely heavily on the model and specify small model error.

Optimal temporal samplings are given in [11]. Here we do not find optimal strategies with
the Lagrangian shallow water model, rather, we study the relationship between different spatial
and temporal sampling strategies.

In the twin experiments the same grid spacing, initial and boundary conditions, and nu-
merical methods used in the forward and tangent linear model experiments were used here. In
addition, the initial guess and the true ocean differ in the same two ways that the initial guess

and nonlinear solution differ in the tangent linear experiments. That is,

1. The initial values of the position and depth differ by 0.04%.

2. The initial velocities differ by 2.0% in both the meridional and zonal directions.
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4.2 Choice of Weights

The values for the weights on the dynamics, initial conditions and data are the inverse of the
covariances of the errors in the dynamics, initial conditions and data. The error covariance
matrices are diagonal, and constant, with values 021 (although more dense matrices that reflect
correlated errors can be used). The standard deviation of the errors o were estimated in the

following manner:

e The standard deviation of the initial position and velocity errors are a specified percent-

age of the average position and velocity, respectively. The values used for the averages

1x10°3
are |0| = || = .741765d0 radians, and g—? % ~ % ~2x107°

_ 09 ~ U
ot T
radians/second (~ 1 x 10 2 m/s).

e The standard deviation of the model errors are a specified percentage of the average accel-
2\ 20 1x1073
8_ 8_zf_uzlxlg—4i~

ot? 6 x 106

erations. The values used for the averages are

ot?
2 x 107" radians/second? (~ 1 x 1076 m/s).

e The standard deviation of the depth data errors are a specified percentage of the average

2
1
value of h. The value used for the average is h ~ ¢~ 0= 0.10 m.
g

e The standard deviation of the longitude and latitude data errors are a specified percentage

of size of the domain, which is 2° x 2°.

The specified percentages used for the errors in the initial conditions, dynamics and data in each

twin experiment are given in Table 1

Experiment #

initial condition

errors(% position

model errors

(% accelerations)

data errors
(% depth and

and velocity) domain)
1 10.0 40.0 10.0
2 0.01 0.1 20.0
3 1.0 1.0 10.0

Table 1: Percentages used to estimate the standard deviation of errors in initial conditions,

dynamics and data.
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Figure 6: Assimilation results from experiment 1 in Table 1: one float with data recorded every

eight hours.

The results from experiment 1 are in Figure 6. There we see that the first, second and third
iterations are almost identical and they move from the initial guess to a trajectory near the true
ocean. These choice of weights result in a good fit of the model and data on this particle.

The results from experiment 2 are in Figure 7. In this experiment it was assumed that the
errors in the model and initial conditions were small, thus the 1st-3rd iterates to not move far
from the initial guess. In addition, the data errors were specified larger than in experiment 1,
thus in this experiment the model has more influence over the solution than the data.

In Figure 8 the results from experiment 3 are plotted. The specified errors in the initial
condition and model are greater than in experiment 2 but less than in experiment 1, while the
specified data errors are the same as in experiment 1. The trajectories move towards the true
ocean since the data error is small, however, the error in the model is also assumed small, thus
the assimilated trajectory stays closer to the initial guess than the assimilated trajectory in
experiment 1.

Results in Figures 6-8 show the effect of different weights on the errors in the model and
data. As we change the values of the weights, the inverse Lagrangian shallow water model reacts
appropriately. The best choice of weights appears to be experiment 1, however, we will see in

the next section that the results from particles for which there are no data are poor.
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Figure 7: Assimilation results from experiment 2 in Table 1: one float with data recorded every

eight hours.

39.21¢
39.205¢
39.2F
©39.15 '
°
2
T
- 39.19r
o data
— true ocean
39.185¢ initial guess
-~ lstiterate
- - 2nd iterate
39.18 3rd iterate
39.175 : ! : : !
-3882 -3881 -388 -38.79 -38.78 -38.77 -38.76

Longitude

Figure 8: Assimilation results from experiment 3 in Table 1: one float with data recorded every

eight hours.
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4.2.1

Sampling of simulated data

In this section we study the effects of different spatial and temporal samplings of data.

Spatial sampling

In experiments 1-3 simulated float data were recorded for only one of the 4 x 4 particles,
and data assimilation results from only that particle for which there are data are shown in
Figures 6-8. This does not illustrate what occurs in the entire domain. In Figure 9(a) we
do show results on the entire domain from experiment 1 when data are recorded at only
particle 11. We do not clearly see the data, true ocean, or 3rd iterate in Figure 9(a), but
the particles are numbered there for reference, and we can see that data is only recorded
at particle 11. By looking more closely at some of the particles in Figure 9(b), one can see
that particles 7 and 10 behave similarly (particle 10 is shown clearly in Figure 9(d)), while
particle 11 and 6 are different from the others. A clear graph of particle 11 (where data
are recorded) is plotted in Figure 6. On the other hand, a clear view of particle 6, where
we have no data, is given in Figure 9(c). There, the trajectories from the iterations try
to approach the true ocean, but they have no local data to guide them. It is interesting
to note that data assimilated at particle 11 did not affect particle 10 or 7, but it did
significantly affect particle 6. Thus our good assimilation result in Figure 6 is not true for

all particles in the domain.

A better representation of the true ocean on the entire domain occurs when we increase
the spatial sampling. In Figure 10 we show results when data from every other float
were recorded (i.e. from eight floats). In Figure 10(a) there is not a clear view of the
trajectories, but one can see that data are recorded at particles 1, 3,6,8,.... By looking at
the particles more closely in Figure 10(b) we see that particles 7 and 10 behave similarly,
while 6 and 11 behave similarly. There is a pattern where every float for which there are
data has iterations that behave like particle 6 in Figure 10(c), while trajectories from those
particles for which we have no data remain at their initial guess, and do not change, as
particle 10 does in 10(d). Since the spatial sampling is dense in this experiment, we do not
have the poor situation that occurred in Figure 9(c), where the trajectories move without

ample guidance from data.

The pattern of the assimilated trajectories just described is a result of both the numerical
approximation and the choice of diagonal weights. The spatial approximation is from a

second order finite difference method and every other spatial grid point is used in the
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Figure 9: Assimilation results from experiment 1 in Table 1 with data recorded every eight hours

at particle 11: all particles (a), four particles (b), particle 6 (c), and particle 10 (d).
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Figure 10: Assimilation results from experiment 1 in Table 1 with data recorded every eight
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and particle 10 (d).
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Figure 11: Assimilation results from experiment 1 in Table 1 with data at particle 11: particle

6 with data at particle 11 recorded every four hours (left) and 16 hours (right).

approximation. Thus spatial points are not affected by their neighbors. In addition, the
choice of diagonal weighting results in no correlation of errors, thus errors at one spatial

point will not affect its neighbors.

In experiment 2 when data are recorded only at particle 11 the 1st-3rd iterates remain at
the initial guess on all other particles. On the other hand, in experiment 3 when data are
recorded only at particle 11 we do have the poor situation that occurs in experiment 1.
This can be remedied by increasing the spatial sampling or by reducing the weights on the

errors in the initial conditions and model.

Temporal sampling

In the previous assimilations the simulated float data were recorded every 8 hours. Here,
we in addition invert simulated data recorded every 4 and every 16 hours. The period of
rotation of the particles changes with time, but there is roughly one oscillation per day in
the first 13 days.

The significance of changing the temporal sampling is not seen at the one particle from
which there are data, but at the other particles. In Figure 11 we plot assimilation results
from particle 6 when data is recorded every 4 and 16 hours at particle 11. Compare this
with Figure 9(c) where the result is from the same experiment but with data recorded at

particle 11 every 8 hours. When we compare these three pictures we see that the trajec-
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tories move past the true ocean as the data become less frequent temporally. However,
the poor situation that occurs in Figure 9(c) is not remedied by increasing the temporal

sampling.

In the case where there is dense spatial sampling, i.e. as in Figure 10 where data are
recorded at every other particle, there is no significant change in assimilation results as
the temporal sampling changes. Since with sparse spatial sampling the assimilation re-
sults do change as temporal sampling changes, this suggests that the optimal temporal
sampling period is a function of the spatial sampling. Our results do not conflict with the
optimal temporal sampling suggested in [11], rather we suggest that we should consider

the temporal sampling in conjunction with the spatial sampling.

5 Conclusions

We have assimilated simulated float data directly into the viscous shallow water equations in
Lagrangian coordinates. Using Lagrangian coordinates for the shallow water equations results
in a highly nonlinear model. However, using the notation introduced in Appendices A-C it is
fairly straightforward, but tedious, to linearize the equations and find the inverse. The forward
nonlinear Lagrangian shallow water equations were integrated successfully for 100 days assuming
phase speeds of 1 m/s and deformation radius of 35 km. With the same assumptions, and due
to computational issues, the linearized model was successfully iterated for 25 days, and data
successfully assimilated for 13 days.

The Lagrangian inverse model was tested by adjusting weights on the errors in the data and
the dynamics, and the model behaved as dictated by the weights. Good fit of data and model
was found with the choice of weights in experiment 1. However, when the Lagrangian trajectory
data are sparse and the weight on the model errors is large, results from the assimilation may
give a good representation of the true ocean on that trajectory, but a poor representation may
result on other trajectories in the domain. If the spatial sampling is dense then there is no longer
a poor representation of the true ocean at any point in the domain. Thus increasing the spatial
sampling improved the assimilation results. In realistic situations, the data coverage may be
poor and increasing the spatial sampling may not be an option. This means that we must rely
heavily on the model and specify that the weights on the error in the model are small, as in
experiment 2.

We varied the temporal sampling by recording trajectory position and depth every 4, 8 or 16

hours. These choices fall within the range of optimal samplings for the ocean surface specified in
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[11]. When the spatial sampling was dense, this variation of temporal sampling did not effect the
assimilation results. On the other hand, when the spatial sampling was sparse the variation did
change the assimilation results. However, the assimilation results did not necessarily improve
as the data became temporally more frequent.

These results show that Lagrangian coordinates can be used to assimilate Lagrangian data.
However, these experiments were all done in an idealized environment. In order to use real
data some significant improvements will need to be made. Firstly, the assumption of a flat
earth must be eliminated, which means that the viscous terms may become too cumbersome for
an exact representation in Lagrangian coordinates. Secondly, open boundary conditions must
be developed and applied. An analysis must be done to determine the type and number of
boundary conditions for the viscous Lagrangian equations. Then for long simulations absorbing
or non-reflecting boundaries will be needed to used. Lastly, the implementation must be made
more efficient, using some of the techniques in [5] such as accelerating the representer calculation

and using it in parallel.
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Appendix A

Given an initial guess u" of the nonlinear solution of

ou Ju
its tangent linear form is
ou”" n—1 ou”" n n—1 aun—l -1
- — — = F" . 2
T +u pe + (u" —u") e (23)

The nonlinearities in (22) can be simulated by iterating (23). When the model has many terms,

it becomes convenient to write the linear form (23) as

%i: = k{l*%i; +ky U+ kR, (24)
where
Pt o= gyt (25)
gt = 2 (26)
Ept = u“—lag—T + ol (27)
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are coefficients whose values are known at the nth iteration.

The tangent linear form of the viscid, Lagrangian shallow water model (5)-(7) has a significant
number of terms (equation (5) alone has 21 terms!). We simplified the tangent linear form by
using the exact solution of (7) and substituting J~! with h/hg. Using the above notation, the

tangent linear form of the momentum equation for A (5) is

+p) | Oliti+p) " 1 Hli+7)

8 /\n 2 2 1 o+ 1
n n n n n—
ZZZ Kijp dar z’gjtp)\ + lijp da 'Lﬂ]tpa +mi; zﬂ] +e3, (28)

1=0 j=0 p=0

The linearization of the momentum equation for 6 (6) follows similarly, i.e.

3 gn +J p) Y ar A _la(z J) o -

1=0 j=0 p=0

We solve the continuity equation (7) exactly, and its linear form is

1 1 i
N () @(Zﬂ)
= Y (R oA T 1 +cpt. (30)
1 1R37] i i ] h
1=0 j=0 ( 80{ﬁ ﬁ
The values of the coefficients k", 17", ml=", &t Bt 0wl gt BLTN 17T and

ey ! are given in Appendix B.

Appendix B
The values of the terms in the linearized viscid, Lagrangian shallow water model (28)-(30) on a
flat earth are given in Tables 2-6. In order to simplify the presentation, we omit the superscript

n=1 and denote partial derivatives with subscripts, i.e.

aAn—l
ot

- At-
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~

i Jp kijp Kijp
0 00 0 0
0 01 (tan ) 0, — sin B cos Oy (22 + 2€2)
2 2
h 3 At dMAta) a Ao ,8t) d(\bta) h
010 w) (Cas? +2%ws) |~ (i) (Bai +2%s) + S isha
2
1 9(06a) , 90a)
0 11 ) <c0s200 d(a,pB) + 6(a,,3)) 0
2 2
K h h
020 ~5 (%) Aot ~25 () Aabia
2
h 1
02 1 (%) (—CoszaoongAg) 0
2 2
h d(AgAt) AAAep) £ (h IOV ED) A
100 (ho (0(a,ﬂ) +2 3(a,B) ) T2 (ho) (a(a,ﬂ) +2 6(a,,8)) 72 hohﬂ
1 9(05,0) | 9(Ag,A)
101 ) (cos20o a(aﬂ,ﬂ) + 3((5@) 0
2 2
110 &(2) Cadis+ ki) 5 () Cabip + Asb)
2
h 1
11 1] =25 () (cbgtads + Xads) 0
1 2 0 0 0
1 21 0 0
2 2
200 —e (%) AsAes - (%) A
2
h 1
2 01 (%) (cos2000%+)\%) 0
210 0 0
2 1 0 0

Table 2: Values for k;;, and ki}p.
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L lijp lijn
0 0 0 0
00 1 tan 0o (\; + 2€2) 0
0 1 0 st () (%% +2%) — vl foha | sratirgy () (%he) + 294feef))
o ) %(%)2(«,&90 a(f?ﬂa))*a(?ofé’)))
020 it (h_,z)?ga/\m — g (}:L_O) 0001c
021 0 %(%)Q(COSzgoﬂwA?)
10 0| —protirgs (1) (%00 + 29080 4 oo | s () (Selp) +25028)
Lo 0 JORC RS o)
110 ety (1) (Bades + 05Mia) o (zh%f(eaewwﬁam)
111 0 =25 (&) (as0ads + Aas)
120 0 0
121 0 0
200 et () 052 ~ et (£) 650
20 ; (2 (bt )
2 1 0 0 0
2 1 0 0

Table 3: Values for /;;, and li;p.
L My g
0 0| ~ream o) + s (tmoted) + o)) | o e + s (b o + o)
01 Froostas (o ~5 (&) r
L0 ~ ey () % 4 () M

Table 4: Values for m;;, and mjjp,.
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— tan fp\6; + (—%L—aw;?—-4n( b g+ 5 )

72hg \ cos? 8p 9(a,B) cos? fp 9(a,pB) 9(a,pB)

co |

) h 29 9(\h) 1 O(N,9) , 0(\0)
sin 0o cos Oo A7 + - (cosg 5o Oap) — (0082 % 9(a,8) + 0(&@)) ‘

Table 5: Values for c¢) and cy.

i j| ki lij Ch
00 0 0
0 1| kg, |02\
ho U }210 o
h2 A
3h

Table 6: Values for k;j and l;j.
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Appendix C

The Euler-Lagrange equations are a coupled two-point initial boundary problem consisting of
a set of backward and forward equations. In order to simplify the presentation we will neglect
the "~ ! superscripts and state the equations for any given iterate. The minimum of the penalty
functional J occurs at A, 8, and h and these values can be found by solving the Euler-Lagrange

equations which also include the following adjoint variables ¢é* and &:

T Qe

Bn
& = / dt / da [ dBWy, fi

J+]

a Bs
Bn
¢ da / dBWry, fo.
a Bs
Let v be the Lagrange multiplier used for constraining the equation for A (15). Then the

backward Euler-Lagrange equations are

526> 2 " pl+i+e) i QD) P )
o~ 22 2\ OO kg€ (CUN R g+ () R g
i=0 j=0 p=
M ~
+or Y (e — am)d(B = )3t — tm) (& = Mm, B, tm) ) (31)
m=1
52¢° 2 24 " pliti+e) | irins OGP P )
52 = Z;Z%Z% (-1) +J+plijpmﬁ +(-1) ““’ZUPWE +(-1) ﬂlz‘jWV
i=0 j=0p=
M A~
+wp D 8o = )38 = Bn)o(t — tm) (d, = (ctm, B, tm) ) (32)
m=1
2 2 s
Hli+7) li+i)
— 1)+ A i+j,5 0
Y ;;(( 1) iy 167 (=1) Uaoﬂﬂjg
M A
+wp, Z 5(0‘ - am)‘s(ﬂ - ﬁm)‘s(t - tm) (dﬁn - h(amaﬁm; tm)) (33)
m=1
with terminal conditions
N, B,T) =&, 8,T) =0 (34)
&, 8,T) =¢&(a,p,T) =0. (35)
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The forward Euler—Lagrange equations are

524 Qliti+p) Qli+i+p) oli+d) 1 Y
52 = z%z()z% ( Upa Zﬂ]tp)\+lijp78ai,8jtp0+mij—aaiﬂjh +cy -I-Wf)\ £* (36)
i=0 j=0 p=
520 olitite) . . gltite) . glitd) ~140
= 2;2)2%( g v gaigi® t Migaig ™| Tt W' (3T
i=0 j=0 p=
ZZ( H—J) ) ) (38)
1 i ’J 7 +cn
=0 j=0 a 'B] 8 ﬂ]
with initial conditions
S\(a,ﬁ,()) =a-—
2 2 ol az
-1 ) Y e —1)¢+g ’ A 1 Z—|—J k; 0
WitQ o€ (a,ﬂ,0)+§j§ (( )k o€ (0 B, 0) + (1) ks ,ﬂ]f (e B, ))
(a,8,0) =P
1 0 2 & 1i+jl 6( A Z+]l az 9 0
VV'LG af (a,,@,O)-ﬁ-;jgo (-1) i]a Z,Bjé (a, 8,0) + (—1) Ua 11335 (@, 8,0) ?
and
0 < T 1A
EA(aaﬁaO) = u +Wi)\t£ (OA,B,O) (41)
0 0(0,6,0) = o+, €0, ,0) (42)
h(a,,0) = hl. (43)
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