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Abstract

Linear least squares problems with box constraints are commonly solved to find model parameters within bounds
based on physical considerations. Common algorithms include Bounded Variable Least Squares (BVLS) and the
Matlab function lsqlin. Here, we formulate the box constraints as quadratic constraints, and solve the corresponding
unconstrained regularized least squares problem. Box constraints as quadratic constraints is an efficient approach
because the optimization problem has a known unique solution.

The effectiveness of the proposed algorithm is investigated through solving three benchmark problems and one
from a hydrological application. Results are compared with solutions found by lsqlin, and the quadraticaly con-
strained formulation is solved using the L-curve, maximum a posteriori estimation (MAP), and the χ2 regularization
methods. The χ2 regularization method with quadratic constraints is the most effective method for solving least
squares problems with box constraints.

Linear least squares, Box constraints, Regularization

AMS Classification: 65F22, 93E24, 62F30

1 Introduction

The linear least squares problems discussed here are often used to incorporate observations into mathematical models.

For example in inversion, imaging and data assimilation in medical and geophysical applications. In many of these

applications the variables in the mathematical models are known to lie within prescribed intervals. This leads to a

bound constrained least squares problem:

min ||Ax− b||22 α ≤ x ≤ β, (1)

where x,α,β ∈ Rn, A ∈ Rmxn, and b ∈ Rm. If the matrix A has full column rank, then this problem has a unique

solution for any vector b [4]. In Section 2, we also consider the case when A does not have full column rank.

Successful approaches to solving bound-constrained optimization problems for general linear or nonlinear objec-

tive functions can be found in [6], [13], [8], [14] and the Matlab R© function fmincon. Approaches which are specific

to least squares problem are described in [3], [9] and [15] and the Matlab function lsqlin. In this work, we implement
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2a novel approach to solving the bound constrained least squares problem by writing the constraints in quadratic form,

and solving the corresponding unconstrained least squares problem.

Most methods for solutions of bound-constrained least squares problems of the form (1) can be catagorized as

active-set or interior point methods. In active-set methods, a sequence of equality constrained problems are solved

with efficient solution methods. The equality constrained problem involves those variables xi which belong to the

active set, i.e. those which are known to satisfy the equality constraint [17]. It is difficult to know the active set a

priori but algorithms for it include Bounded Variable Least Squares (BVLS) given in [20]. These methods can be

expensive for large-scale problems, and a popular alternative to them are interior point methods.

Interior point methods use variants of Newton’s method to solve the KKT equality conditions for (1). In addition,

the search directions are chosen so the inequalities in the KKT conditions are are satisfied at each iteration. These

methods can have slow convergence, but if high-accuracy solutions are not necessary, they are a good choice for large

scale applications [17]. In this work we write the inequality constraints as quadratic constraints and solve the optimiza-

tion problem with a penalty-type method that is commonly used for equality constrained problems. This formulation

is advantageous because the unconstrained quadratic optimization problem corresponding to the constrained one has

a known unique solution.

When A is not full rank, regularized solutions are necessary for both the constrained and unconstrained problem.

A popular approach is Tikhonov regularization [21]

min ||Ax− b||22 + λ2||L(x− x0)||22, (2)

where x0 is an initial parameter estimate and L is typically chosen to yield approximations to the l th order derivative,

l = 0, 1, 2. There are different methods for choosing the regularization parameter λ; the most popular of which

include L-curve, Generalized Cross-Validation (GCV) and the Discrepancy principle [5]. In this work, we will use

a χ2 method introduced in [11] and further developed in [12]. The efficient implementation of this χ2 approach for

choosing λ compliments the solution of bound-constrained least squares problem with quadratic constraints.

The rest of the paper is organized as follows. In Section 2 we re-formulate the bound-constrained least squares

problem as an unconstrained quadratic optimization problem by writing the box constraints as quadratic constraints. In

Section 3 we give numerical results from benchmark problems [5] and from a hydrological application, and in Section

4 give conclusions.

2 Bound-Constrained Least Squares

2.1 Quadratic Constraints

The unconstrained regularized least squares problem (2) can be viewed as a least squares problem with a quadratic

constraint [19]:

min ||Ax− b||22 (3)

subject to ||L(x− x0)||22 ≤ δ.



3Equivalence of (2) and (3) can be seen by the fact that the necessary and sufficient KKT conditions for a feasible point

x∗ to be a solution of (3) are

(ATA− λ∗LTL)x∗ = −ATb

λ∗ ≤ 0

λ∗(||L(x− x0)||22 − δ) = 0

δ − ||L(x− x0)||22 ≥ 0

Here λ∗ is the Lagrange multiplier, and equivalence with problem (2) corresponds to λ2 = −λ∗. The advantage of

viewing the problem in a quadratically constrained least squares formulation rather than as Tikhonov regularization,

is that the constrained formulation can give the problem physical meaning. In [19] they give the example in image

restoration where δ represents the energy of the target image. For a more general set of problems, the authors in [19]

successfully find the regularization parameter λ by solving the quadratically constrained least squares problem.

Here we introduce an approach whereby the bound constrained problem is written with n quadratic inequality

constraints, i.e. (1) becomes

min ||Ax− b||22 (4)

subject to (xi − x̄i)2 ≤ σ2
i i = 1, . . . , n

where x̄ = [xi; i = 1, . . . , n]T is the midpoint of the interval [α,β], i.e. x̄ = (β + α)/2 and σ = (β − α)/2. The

necessary and sufficient KKT conditions for a feasible point x∗ to be a solution of (4) are:

(ATA + λ∗)x∗ = λ∗x̄ + ATb (5)

(λ∗)i ≥ 0 i = 1, . . . , n (6)

(λ∗)i[σ2
i − (xi − x̂i)2] = 0 i = 1, . . . , n (7)

σ2
i − (xi − x̂i)2 ≥ 0 i = 1, . . . , n (8)

where λ∗ = diag((λ∗)i).

Reformulating the box constraints α ≤ x ≤ β as quadratic constraints (xi − x̄i)2 ≤ σ2
i , i = 1, . . . , n effectively

circumscribes an ellipsoid constraint around the original box constraint. In [18] box constraints were reformulated in

exactly the same manner, however the optimization problem was not solved with the penalty or weighted approach as

is done here, and described in the Section 2.2. Rather, in [18] parameters were found which ensure there is a convex

combination of the objective function and the constraints. This ensures the ellipsoid defined by the objective function

intersects that defined by the inequality constraints.



42.2 Penalty or Weighted Approach

The penalty [17] or weighted [7] approach is typically used to solve a least squares problem with n equality constraints.

A simple application of this approach would be to solve

min ||Ax− b||22 (9)

subject to x = x1.

The objective function and constraints are combined in the following manner:

min ε2||Ax− b||22 + ||x− x1||22, (10)

and a sequence of unconstrained problems are solved for ε → 0. By examination, one can see that as ε → 0, infinite

weight is added to the contraint. More formally, in [7] they prove that if x̃ is the solution of the least squares problem

(10) and x̂ the solution of the equality constrained problem (9) then

||x̃(ε)− x̂|| ≤ η||x̂||

with η being machine precision. Note that (10) is equivalent to Tikhonov regularization (2) with λ2 = ε−2 → ∞,

L = I and x1 = 0.

We apply the penalty or weighted approach to the quadratic, inequality constrained problem (4). In this case, the

penalty term ||x−x1||22 must be multiplied by a matrix which represents the values of the inequality constraints, rather

than a scalar involving λ or ε. This matrix will come from the first KKT condition (5), which is the solution of the

least squares problem:

min ||Ax− b||22 + ||λ1/2
∗ (x− x̄)||22. (11)

We view the inequality constraints as a penalty term by choosing the value of λ∗ to be C = diag((σ)2i ). Since

the quadratic constraints circumscribe the box constraints, a sequence of probems for decreasing ε are solved which

effectively decreases the radius of the ellipsoid until the constraints are satisfied, i.e. solve

min ||Ax− b||22 + ||C−1/2
ε (x− x̄)||22, (12)

where Cε = εC. Starting with ε = 1, the penalty parameter ε decreases until the solution of the inequality constrained

problem (4) is identified. Since ε → 0 solves the equality constrained problem, these iterations are guarenteed to

converge when A is full rank.

Algorithm 1 Solve least squares problem with box constraints as quadratic constraints.
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ε = diag((2/(βi − αi))2),

Z = {j : j = 1, . . . , n}, J = NULL
count=0
Do (until all constraints are satisfied)

Solve (ATA + C−1
ε )y = AT (b−Ax̄) for y

x̃ = x̄ + y
if αj ≤ x̃j ≤ βj j ∈ P , else j ∈ Z
if Z :=NULL, end
ε = 1/(1 + count/10)ε
if j ∈ Z , (C−1

ε )jj = ε(C−1
ε )jj

End
This algorithm performs poorly because it over-smoothes the solution x. In particular, if the interval is small, then

the standard deviation is small, and the solution is heavily weighted towards the mean, x̄. This approach to inequality

constraints is not recommended unless prior information about the parameters, or a regularization term is included in

the optimization as described in Section 2.3.

2.3 Regularization and quadratic constraints

Algorithm 1 is not useful for well-conditioned or full rank matrices A because it over-smoothes the solution. In

addition, for rank deficient or ill-conditioned A, we may not be able to calculate the least squares solution x̃ to (12)

x̃ = x̄ + (AAT + C−1
ε )−1AT (b−Ax̄),

because as ε decreases, (ATA + C−1
ε ) will eventually become ill-conditioned. Thus the approach to inequality

constraints proposed here should be used with regularized methods when typical solution techniques do not yield

solutions in the desired interval.

As mentioned in the Introduction, a typical way to regularize a problem is with Tikhonov regularization (2), but

any regularization method can be used to implement box constraints as quadratic constraints. Methods such as the

discrepancy principle [16], L-curve [5], χ2 regularization [11] and maximum a posteriori estimation (MAP) [1] often

weight the least squares problem with the inverse covariance matrix for the errors in the data, Cb. In addition the χ2

method and MAP estimation weight the regularization term with the inverse covariance matrix on the mean zero initial

parameter estimate, Cx, i.e. from (2) λL = C−1/2
x , in which case we solve

min
x
J

where

J = ||C−1/2
b (Ax− b)||22 + ||C−1/2

x (x− x0)||22.

Applying quadratic constraints to the regularized functional amounts to solving the following problem:

min
x
Jε (13)

where

Jε = ||C−1/2
b (Ax− b)||22 + ||C−1/2

x (x− x0)||22 + ||C−1/2
ε (x− x̄)||22.
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ellipsoids. It is possible, but not necessary, to write the regularization term and the inequality constrained term as a

single term. The solution, or minimum value of Jε occurs at

x̃ε = x0 + (ATC−1
b A + C−1

x + C−1
ε )−1(ATC−1

b r + C−1
ε 4x), (14)

where4x = x̄− x0.

In order for the solution (14) to exist, Dx = f must be have a solution where

D =

[
C−1/2
x

C−1/2
ε

]
, f =

[
C−1/2
x x0

C−1/2
ε x̄

]
,

i.e. f must be in the range of D. This will ensure that there is an intersection of the two ellipsoids defined by the last

two terms in Jε.

Algorithm 2 Solve regularized least squares problem with box constraints as quadratic constraints.

Initialization:x̄ = (β + α)/2,C−1
ε = diag((2/(βi − αi))2),

Z = {j : j = 1, . . . , n}, J = NULL
Find Cx by any regularization method.
count=0
Do (until all constraints are satisfied)

Solve (ATA + C−1
ε + C−1

x )yε = (ATC−1
b r + C−1

ε x̄) for yε
x̃ε = x0 + yε
if αj ≤ x̃j ≤ βj j ∈ P , else j ∈ Z
if Z :=NULL, end
ε = 1/(1 + count/10)ε
if j ∈ Z , (C−1

ε )jj = ε(C−1
ε )jj

count = count +1
End

2.3.1 Regularization methods

In Section 3 we will show results from the quadratically constrained problem when regularization is done by the

L-curve, χ2 regularization and maximum a posteriori estimation (MAP).

The L-curve approach finds the parameter λ in (2), for specified L by plotting the weighted parameter misfit

||L(x− x0)||22 versus the data misfit ||b−Ax0||22. When plotted in a log-log scale the curve is typically in the shape

of an L, and the solution is the parameter values at the corner. These parameter values are optimal in the sense that the

error in the weighted parameter misfit and data misfit are balanced.

For the purposes of Algorithm 2, the L-curve method finds λ, for specified L with Cx = λ−2(LTL)−1, and has the

potential to include random noise in the data when Cb is specified. MAP estimation and the χ2 regularization method

can not only assume that the data contain noise, but so do the initial parameter estimates. The MAP estimate assumes

the data b are random, independent and identically distributed, and follow a normal distribution with probability

density function

ρ(b) = const× exp
{
−1

2
(b−Ax)TC−1

b (b−Ax)
}
, (15)



7with Ax the expected value of b and Cb the corresponding covariance matrix. In addition, it is assumed that the

parameter values x are also random following a normal distribution with probability density function

ρ(x) = const× exp
{
−1

2
(x− x0)TC−1

x (x− x0)
}
, (16)

with x0 the expected value of x and Cx the corresponding covariance matrix.

In order to maximize the probability that the data were in fact observed we find x where the probability density is

maximum. The maximum a posteriori estimate of the parameters occurs when the joint probability density function is

maximum [1], i.e. optimal parameter values are found by solving

min
x

{
(b−Ax)TC−1

b (b−Ax) + (x− x0)TC−1
x (x− x0)

}
. (17)

This optimal parameter estimate is found under the assumption that the data and parameters follow a normal distri-

bution and are independent and identically distributed. The χ2 regularization method is based on this idea, but the

assumptions are relaxed, see [11] [12]. Since these assumptions are typically not true, we do not expect the MAP or

χ2 estimate to give us the exact parameter values.

The estimation procedure behind the χ2 regularization method is equivalent to that for MAP estimation. However

the χ2 regularization method is an approach for finding Cx ( Cb) given Cb (Cx), while MAP estimation simply takes

them as inputs. This χ2 method is based on the fact that he minimum value of the functional J (x̃) is a random variable

which follows a χ2 distribution with m degrees of freedom [2, 11]. In particular, given values for Cb and Cx, the

difference |J(x̃)−m| is an estimate of confidence that Cb and Cx are accurate weighting matrices. Mead [11] noted

these observations, and suggested a matrix Cx can be found by requiring that J (x̃), to within a specified (1 − α)

confidence interval, is a χ2 random variable with m degrees of freedom, namely such that

m−
√

2mzα/2 < rT (ACxA
T + Cb)−1r < m+

√
2mzα/2, (18)

where r = b − Ax0 and zα/2 is the relevant z-value for a χ2-distribution with m degrees of freedom. In [12] it was

shown that for accurate Cb, this χ2 approach is more efficient and gives better results than the discrepancy principle,

the L-curve and generalized cross validation (GCV) [5].

In the numerical results in Section 3, MAP is implemented only for the benchmark problems where the true, or

mean, parameter values are known. In the benchmark problems x0 is randomly generated with error covariance Cx,

just as the data are generated with error covariance Cb. The MAP estimate uses the exact value for Cx, while the χ2

method finds Cx = σ2
xI by solving (18), thus the MAP estimate is the “exact” solution for the χ2 regularized estimate

but cannot be used in practice when Cx is unknown.

Note that the L-curve is similar to the MAP and χ2 estimates when Cx = λ−2(LTL)−1/2. The advantage of

the MAP and χ2 estimates is when Cx is not a constant matrix and hence the weights on the parameter misfits vary.

Moreover, when Cx has off diagonal elements, correlation in initial parameter estimate errors can be modeled. The

disadvantage of MAP is that a priori information is needed. On the other hand the χ2 regularization method is an

approach for finding elements of Cx, thus matrices rather than parameters may be used for regularization, but not as
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xI. Future

work involves developing efficient algorithms for more dense Cx.

In Section 3 we give numerical results where the box constrained least squares problem (1) is solved by (13), i.e.

by implementing the box constraints as quadratic constraints using Algorithm 2.

3 Numerical Results

3.1 Benchmark Problems

We present a series of representative results from Algorithm 2 using benchmark cases from [5]. Algorithm 2 was

implemented with the χ2 regularization method, the L-curve and maximum a posteriori estimation (MAP), and com-

pared with results from the Matlab constrained least squares function lsqlin. In particular, system matrices A, right

hand side data b and solutions x are obtained from the following test problems: phillips, shaw, and wing. These

benchmark problems do not have physical constraints, so we set them arbitrarily as follows: phillips (0.2 < x < 0.6),

shaw (0.5 < x < 1.5), and wing (0 < x < 0.1). In all cases, the parameter estimate from Algorithm 2 is essentially

found by (14).

In all cases we generate a random matrix Θ of size m × 500, with columns Θc, c = 1 : 500, using the Matlab

function randn. Then setting bc = b + level‖b‖2Θc/‖Θc‖2, for c = 1 : 500, generates 500 copies of the right hand

vector b with normally distributed noise, dependent on the chosen level. Results are presented for level = .1. An

example of the error distribution for all cases with n = 80 is illustrated in Figure 1. Because the noise depends on the

right hand side b the actual error, as measured by the mean of ‖b− bc‖∞/‖b‖∞ over all c, is .128.

The covariance Cb between the measured components is calculated directly for the entire data set B with rows

(bc)T . Because of the design, Cb is close to diagonal, Cb ≈ diag(σ2
bi

) and the noise is colored. In all experiments,

regardless of parameter selection method, the same covariance matrix Cb is used. The MAP estimate requires an

additional input of Cx, which is computed in a manner similar to Cb. The χ2 method finds Cx by solving (18) for

Cx = σxI, while the parameter λ found by the L-curve is used to form Cx = λ−2I. Finally, the matrix Cε implements

the box constraints as quadratic constraints and is the same for all three regularizations methods, with

Cε = εC

= diag(σ2
i ), σi = (βi − αi)/2 xi ∈ [αi, βi].

The a priori reference solution x0 is generated using the exact known solution and noise added with level = .1

in the same way as for modifying b. The same reference solution x0 is used for all right hand side vectors bc, see

Figure 2

The unconstrained and constrained solutions to the phillips test problem are given in Figure 3. For the uncon-

strained solution, the L-curve gives the worst solution, while the MAP and χ2 estimates are similar. The MAP

estimate is an exact version of the χ2 regularization method because the exact covariance matrix Cx is given. The χ2

regularization method finds Cx, using the properties of a χ2 distribution, thus it requires less a priori knowledge.
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Figure 1: Illustration of the noise in the right hand side for problem (a)phillips , (b) shaw (c) wing.
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Figure 2: Illustration of the reference solution x0 for problem (a)phillips , (b) shaw (c) wing.
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Figure 3: Phillips (a) unconstrained and (b) constrained solutions

The methods used in the unconstrained case were implemented with quadratic constraints in Figure 3(b). For

comparison, the Matlab function lsqlin was used to implement the box constraints in the linear least squares problem.

We see here that the lsqlin solution stays within the correct constraints, but does not retain the shape of the curve.

This is true for all test problems, also see Figures 5(b) and 7(b). Figures 4, 6 and 8 show that for any regularization

method, the significant advantage of implementing the box constraints as quadratic constraints and solving (13), is that

we retain the shape of the curve.

The constrained and unconstrained solutions to the phillips test problem for each method are given in Figure 4. The

quadratic constraints correctly enforce the box constraints in all cases, regardless of the accuracy of the unconstrained

solutions. In fact, the poor results from the L-curve are improved with the constraints. However, this is not necessarily

true for the shaw test problem in Figure 5. Again the L-curve gives the poorest results in the unconstrained case, while

in the constrained case it does not retain the correct shape of the curve. The constrained L-curve is still be preferable

over the results from lsqlin, as shown in Figure 5(b).

For all three test problems, in the constrained and unconstrained cases, Figures 4(b)(c), 6(b)(c) and 8(b)(c) each

show that the χ2 estimate gives as good results as the MAP estimate. The χ2 estimate does not require any a priori

information about the parameters, thus it is a significant improvement over the MAP estimate.

The wing test problem in Figures 7-8 has a discontinuous solution. Least squares solutions typically do poorly

in these instances because they smooth the solution. The L-curve does perform poorly, and is not improved upon by
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Figure 4: Phillips test problem of (a) L-curve , (b) maximum a posteriori estimation (c) regularized χ2 method.
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Figure 5: Shaw (a) unconstrained and (b) constrained solutions
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Figure 6: Shaw test problem of (a) L-curve , (b) maximum a posteriori esitmation (c) regularized χ2 method.
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Figure 7: Wing (a) unconstrained and (b) constrained solutions

implementing the constraints. However, both the MAP and χ2 estimates were able to capture the discontinuity in the

constrained and unconstrained cases.

3.2 Estimating data error: Example from Hydrology

In addition to the benchmark results, we present the results for a real model from hydrology. The goal is to obtain four

parameters x0 = [θr, θs, α, n] in an empirical equation developed by van Genuchten [22] which describes soil mois-

ture as a function of hydraulic pressure head. A complete description of this application is given in [12]. Hundreds

of soil moisture content and pressure head measurements are made at multiple soil pits in the Dry Creek catchment

near Boise, Idaho [10], and these are used to obtain b. We rely on the laboratory measurements for good first es-

timates of the parameters x0, and their standard deviations σxi
. It takes 2-3 weeks to obtain one set of laboratory

measurements, but this procedure is done multiple times from which we obtain standard deviation estimates and form

Cx = diag(σ2
θr
, σ2
θs
, σ2
α, σ

2
n). These standard deviations account for measurement technique or error. however, mea-

surements on this core may not accurately reflect soils in entire watershed region. We will show results from two soil

pits: NU10 15 and SU5 15. They represent pits upstream from a weir 10 and 5 meters, respectively, both 15 meters

from the surface.

These parameters depend on the soil type: sand, silt, clay, loam and combinations of them. Extensive studies have

been done to determine the parameter values based on soil type. These values can be found in [23]. In particular,
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Figure 8: Wing test problem of (a) L-curve , (b) maximum a posteriori esitmation (c) regularized χ2 method.



17lower and upper bounds have been given for each soil type, thus each parameter is assumed to lie within prescribed

intervals. The second column of Table 1 gives parameter ranges (or constraints) in the form soil class averages found

in [23]. These ranges are used to form Cε.

This is a severely overdetermined problem, and we used constrained least squares (1) to find the best parameters

x. The matrix A is given by van Genuchten’s equation, while the data b are the field measurements described above.

The box constraints in Table 1 were implemented as quadratic constraints with the penalty approach, and are used to

form Cε.

Since initial parameter estimates x0 and covariance Cx is found by repeated measurements in the laboratory, the

χ2 method is used to find the standard deviation σb on field measurements b, and form Cb = σ2
bI. In other words,

the regularization parameter or initial parameter misfit weight is taken from laboratory measurements while the data

weight is obtained by the χ2 method.

Table 1 gives parameter values for both pits, in both the constrained and unconstrained cases. For both pits, the

only unconstrained parameter that did not fit into the appropriate range is θs. The constrained parameters did fit into

the ranges given by [23]. However, after further investigation, we began to question the validity of these ranges. The

parameter θs represents soil moisture when the ground is nearly saturated. In the semi-arid environment of the Dry

Creek Watershed, the soil does not typically come near saturation. The fact that Algorithm 2 correctly implemented

the constraints showed us that that the soil class averages, with a minimum value of θs = 0.3010, do not reflect the

soils found in this region. A more realistic minimum would be θs = 0.2.

NU10 15 SU5 15
Parameter Ranges Unconstrained Constrained Unconstrained Constrained
log10 α [−2.86,−0.9060] −1.6109 −0.9567 −2.0109 −1.0978
log10 n [0.004, 0.6820] 0.1732 0.2182 0.5239 0.1182
θs [0.3010, 0.5680] 0.2271 0.3522 0.2222 0.3409
θr [−0.0150, 0.2310] −0.0080 0.0493 0.1032 −0.0109

Table 1: Hydrological Parameters

Figure 9 shows the constrained and unconstrained results with θ representing soil moisture on the horizontal axis,

and ψ representing pressure head on the vertical. The van Genuchten equation is typically plotted in this manner, and

the curve is called the soil moisture retention curve. Near saturation, i.e. for |ψ| near 0, the soil moisture falls below

0.25 further indicating the the soil class averages found in [23] are not appropriate for this region and should not be

used as a constraints.

4 Conclusions

In this paper we introduced an implementation of box constraints as quadratic constraints for linear least squares

problems. The quadratic constraints are added to the objective function resulting from the regularized least squares

problem, thus there is a known unique solution. The quadratic constraints circumscribe an ellipsoid around the box

constraints, and the radius of the ellipsoid is iteratively reduced until the constraints are satisfied.
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Figure 9: Unconstrained and constrained soil moisture retention curves for (a) SD5 15 and (b) NU10 15 .



19The quadratic constraint approach was used with regularization via the L-curve, maximum a posteriori estimation

(MAP) and the χ2 method [11], [12]. Constrained results were compared to those found by the Matlab function lsqlin.

Results from lsqlin stayed within the constraints, but did not maintain the correct shape of the parameter solution

curve. The L-curve gave the poorest unconstrained results, which were sometimes improved upon by implementing

constraints. The MAP and χ2 estimates gave the best results but the MAP estimate requires a priori information about

the parameters which is typically not available. Thus the method of choice for constrained least squares problems is

χ2 regularization method with box constraints implemented as quadratic constraints. This approach was also used to

solved a problem in Hydrology.

The quadratic constraint approach can be implemented with any regularized least squares method with box con-

straints. It is simple to implement and is preferred over the Matlab function lsqlin because the constrained solution

keeps the shape of the unconstrained solution, while the lsqlin solution merely stays at the bounds of the constraints.
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