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ABSTRACT
Electrical resistivity tomography (ERT) is a useful tool for subsurface imaging.
However, the resulting nonlinear inverse problem is severely under-determined.
Smoothness constraints are commonly implemented with least squares to make the
problem solvable, but the constraints limit the ability to produce discontinuities in
the model parameters. In practice, sharp delineations have been recovered with these
constraints by applying appropriate weights or covariance matrices which relax the
constraint at different regions [10, 14, 15, 19, 26]. For example in medical imaging,
anatomical information has been included in electrical impedance tomography (EIT)
through matrix valued fields [3, 4, 16]. More closely related to this work, prior
structural information was added to ERT inversion through matrix valued fields [12].
In this work, we analyze the binary matrix that relaxes the smoothness constraint
in locations where there is a known boundary. Analysis of the recovered parameters
using this matrix gives insight as to the type of heterogeneities that can be recovered.
We conclude that it is more effective to include structural information with 1st and
2nd order derivative constraints than with initial parameter estimates. In addition,
we show that the 1st derivative constraint produces models with piecewise constant
variability, while a 2nd derivative will yield linear variability. These conclusions are
verified on synthetic ERT inversions in seven different subsurface structures.
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1. Introduction

Most inverse methods in geophysics require regularization, especially in the subsur-
face where direct observations are expensive and unavailable. Typically smoothing
constraints are implemented in a least squares inversion [7, 9]. They are useful for
producing general trends interpretable at large spatial scales, and have proven to be
especially useful when temporal data is available to compare changes in the subsurface
with time.
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Most geophysical studies have a known discontinuous boundary present in the
subsurface such as permafrost, bedrock, or the water table. The implementation of
smoothness constraints is not ideal because they prevent the ability to produce model
parameters with discontinuities. For example, an accurate, quantitative analysis of soil
moisture requires inverse methods that allow sharp changes in soil properties. For this
reason, the conventional approach for inverse problems with sharp discontinuities is
to avoid smoothing operators [2].

Numerical results in Section 4 focus on imaging subsurface structures using elec-
trical resistivity tomography (ERT). There have been some studies that promote and
implement the use of discontinuities in a least squares ERT inversion in a variety of
different ways. This includes semivariogram constraints [14, 15], joint inversion [11],
covariance matrices [26], and active Lagrange Parameters [17]. In some cases, the lo-
cation of the discontinuity is incorporated into the model parameters themselves [30].

The most general approach of incorporating discontinuities is by relaxing the
smoothness constraint [12]. This is done in [10] where information about a discon-
tinuity is derived from ground penetrating radar (GPR). The information has also
come from well data [15], or known man-made structures in the subsurface [28]. How-
ever, an investigation of how to add discontinuities through a smoothness constraint,
and its consequences, has not been provided. Therefore, in this work we define the reg-
ularization operator that relaxes the constraint in two dimensions and determine that
the 1st and 2nd derivative regularization operators effectively capture discontinuities.
This result is counter to most regularization methods that use 1st and 2nd derivative
operators to produce smooth solutions [2].

Similar to ERT, electrical impedance tomography (EIT) uses low frequencies to
measure resistivity and typically results in an ill-posed inverse problem. EIT is often
used in medical imaging and can be considered more general than ERT because the
imaginary component is more dominant and the frequency dependence on conductiv-
ity can be utilized. Recent work on imaging conductivity anomalies from boundary
measurements can be found in [3, 4]. In that work the anomalies and frequency de-
pendence of their conductivities were used to significantly improve their imaging in a
heterogeneous environment.

Including prior information involving anatomical structure in EIT medical imaging
was introduced in [16]. This is analogous to including boundary information in the
Earth’s subsurface. Similar to this work, in [16] the prior information is incorporated
in a Tikhonov regularization term with a matrix valued field. They give results with
both a 0th and 1st derivative operators. In Section 2 we explain that prior boundary in-
formation should be included with either a 1st or 2nd derivative operator, and not with
a 0th, i.e. an initial parameter estimate. This is justified with a simple mathematical
explanation, where we also explain that the recovered variability in the heterogeneous
environment will be constant with a 1st derivative constraint, and linear with 2nd

derivative constraint.
We begin in Section 2 by explaining the effect of typical smoothness constrains in

an inversion and how a least squares regularization can allow for discontinuities. We
illustrate these points with a simple example. In Section 3 we discuss the assumptions
that are made when relaxing the smoothness constraint to produce discontinuities and
expand the implementation into a two dimensional problem with Occam’s method.
Our synthetic results in Section 4 include ERT simulations on seven different types of
true model parameters, and compare the performances of the derivative operators as
constraints.
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2. Discontinuous Inversions

2.1. The Constraint

Smooth model inversion can be viewed as constrained optimization, i.e.

min(φd(m)), s.t. ||Lp(m−mref )||22 ≤ δ

where

φd(m) = ||F [m]− d||22.

The value of φd is the data residual, m contains the unknown model parameters, F [m]
is the mathematical model, and d are observational data. The constraint term contains
the pth derivative operator Lp, and mref is a reference model or initial parameter
estimate. The goal of the constraint term in regularization is to stabilize the inversion
problem such that small perturbations in the data yields small perturbations in the
inverted model. The constraint term can also be viewed as adding prior information,
where the type of constraint should reflect something already known about the true
model. By viewing the regularization terms as constraints containing prior information,
we develop a detailed understanding of producing discontinuous parameters with pth

derivative constraints.
When the zeroth derivative is used, the derivative operator becomes the identity

matrix:

L0 = I.

With this approach, the reference model mref is used as the primary constraint, i.e.:

||m−mref ||22 ≤ δ

is prior information on the model parameters. If the reference model is a good estimate,
or if the estimate is correctly weighted, then the inversion yields acceptable results.
However, good reference model parameters require both the location of the discontinu-
ity, as well as estimates of the model parameters. If the location of the discontinuities
are known, it was shown in [20] that appropriate weights within each subregion can
be found with multiple χ2 tests. The objectives here include defining how to incorpo-
rate known discontinuities in least squares estimates, and identifying the proper use of
derivative operators Lp that avoids the need to give good model parameter estimates.

If one seeks to provide detailed reference model parameters through the use of the
L0 constraint, it takes away the purpose of the inversion to find the model parameters.
Therefore, we focus on constraining the 1st and 2nd derivatives through L1 and L2

where the reference model parameters are typically a zero vector. Less information is
needed with the L1 and L2 operators because the meaning of the constraint drastically
changes from when it was constrained with L0. The L1 and L2 constraints do not
require specific values for the parameter estimates, only that they should be smooth.
We take this simpler smooth parameters constraint and show how it can be used as a
constraint that specifies the discontinuities.
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2.2. The Regularization Operator

Appropriate weights or error covariance matrices for the constraint allow the con-
straint to be relaxed in different regions. If the location of the discontinuity is known
it can be identified with a binary matrix, or regularization operator, which we notate
as R

R = diag(r1, r2, ..., rn), ri = 0 or 1, (1)

where n is the number of rows in Lp, and typically the number of parameters. This
operator R is incorporated in the inversion as follows

φ(m) = ||Wd(d− F[m])||22 + α2||RLpm||22, (2)

where Wd is a weight on the data error, representing the error covariance matrix. When
there is a sharp discontinuity, ri = 0 is chosen at that spatial location indicating that
there is no smoothness. A value of one is assigned to all other values of ri. The result
of applying R is that only data inform the value of the parameters at the specified
discontinuity.

This approach is similar to the regularization matrix R used in [1]. The difference in
the discussion in [1] and here is that we do not assume RTR represents the prior inverse
error covariance matrix. We will show results minimizing (2) when Lp = I, however,
including R with that constraint is redundant in our definition of R because mref

already contains the boundary information. In addition, the weight on the boundary
information contained in mref (which reflects its error covariance) is not treated as an
input to the algorithm here, rather it is determined in the regularization parameter(s)
selection method. Results in Section 4 use the χ2 method [22] to find this weight. We
find that assuming the error covariance for the initial parameter estimate is known,
and can be inputted into the algorithm, is not realistic. Alternatively, we find that
knowledge of the location of the boundary can be reliably inferred from other data,
and that is all that is required to define R.

For example, in the one-dimensional case consider six model parameters. Applying
the first derivate operator L1 results in the constraint

L1m =
1

∆x


m2 −m1

m3 −m2

m4 −m3

m5 −m4

m6 −m5

0

 .

If a sharp transition occurs in-between m2 and m3, and m4 and m5 then

R = diag(1, 0, 1, 0, 1, 1)
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so that the total product yields:

RL1m =
1

∆x


m2 −m1

0
m4 −m3

0
m6 −m5

0

 .

In this case the 1st derivative constraint is applied everywhere except along the transi-
tion between m2 and m3 as well as a second discontinuity between m4 and m5. When
the regularization matrix is included with the constraint term, the result in an array
of inverted parameters with discontinuities delineating between piecewise smooth
regions.
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m
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b) Linear variability in three 

subregions

Figure 1. True parameters for the simple layered example.

2.3. Derivative Constraints

Here we study the effects of 1st and 2nd derivative constraints with or without the
incorporation of the regularization operator R on a canonical three layered subsurface
model. It is assumed that there is a large weight on the constraint term so that we can
understand the constraint’s effect on the inversion. We denote the inverted parameters
by:

mRLp
= argmin(φ(m)) for R 6= I

mLp
= argmin(φ(m)) for R = I

Figure 1(a) gives an idealized example of a true model with piecewise constant vari-
ability in the subregions, while Figure 1(b) reflects linear variability in the subregions.

When the constraint term is implemented with a 0th derivative operator and a refer-
ence model mref , a large weight on the constraint implies that the inverted result mL0

is going to be the same as the provided reference model. However, if the regularization
operator is included into the constraint term, then the inverted result mRL0

will not
be the reference model at the boundaries. This is because the regularization operator
completely removes any influence of the reference model on the inverted model pa-
rameters at the specified boundary. The values in such regions near the boundary are
solely dependent on the observational data, including any noise that may be present.
This is not advantageous since it nullifies the reference model constraint at the bound-
aries and hence we do not recommend using the L0 constraint with the regularization
operator R.
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Figure 2. Inverted parameters and their derivatives in piecewise constant variability simple example, Fig-

ure 1(a). L1 enforced exactly in (a)-(c), L2 constraint enforced exactly in (d)-(f). Red boxes indicate exact

constraint used for inversion.

The rows in each of Figures 2-5 show the idealized inverted parameters in the 1st

column, along with their 1st and 2nd derivatives in the 2nd and 3rd columns, respec-
tively. Figures 2 and 4 give idealized inverted results with the standard smoothness
constraints L1m and L2m while the effect of the regularization operator through
discontinuous smoothness constraints RL1m and RL2m is shown in Figures 3 and 5.
When R 6= I is applied as the constraint, mRL1

and mRL2
only fit data at the specified

discontinuities, and this is indicated by the open circles in Figures 3 and 5.
The first columns in Figures 2 and 4 show how inverted results with 1st and 2nd

derivative constraints merely provide a constant or linear average of parameter esti-
mates, respectively. Alternatively, the first columns in Figures 3 and 5 show how the
regularization operator applied to both 1st and 2nd derivative constraints can yield
inverted parameters that both include the presence of a boundary as well as reflect
constant or linear variability within each subregion.

It is important to emphasize that the choice of using the 1st or 2nd derivative
as the constraint term rests on two factors: 1) the amount (or lack) of variability
within each region separated by the discontinuities, and 2) the degree of sensitivity
that the observational data have on each of these regions. Due to the dependence of
the sensitivity of the data to the model parameters, no theoretical absolute dictates
which constraint would perform consistently better when applied to a problem where
the variability between the model parameters do not vary. Clearly the 1st derivative
would be a good choice, however, the 2nd derivative could also yield the same results.
This performance would be purely dependent on the spatial sensitivity between the
observations and each region in the model parameters. With greater sensitivity, the
2nd derivative constraint would perform just as good as the 1st derivative constraint
for model parameters with discontinuities separating regions that have no variability.
In this case, the 2nd derivative has the potential to provide optimal results in either
constant or linear variability subregions. Therefore, through this simple example we
have not only explained the effect of the regularization operator R, but have also justi-
fied why most geophysical applications find success with the 2nd derivative constraint.
We verify these conclusions in an ERT synthetic inversion in Section 4.
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Figure 3. Inverted parameters and their derivatives in piecewise constant variability simple example, Figure

1(a). RL1 enforced exactly in (a)-(c), RL2 constraint enforced exactly in (d)-(f). Red boxes indicate exact
constraint used for inversion.

3. Implementation of the Regularization Operator

3.1. Assumptions

The first and foremost assumption made in this work is that the location of the
discontinuities is known. In the case of geophysical investigations, this would imply
that there is another dataset that provides the location of subsurface boundaries.
The second assumption is that the discontinuity is sharp such that the distance of the
transition that occurs between each region is small relative to the spatial resolution
of the model parameters. A good example occurs frequently with electrical resistivity
tomography, wherein the spatial resolution of the model parameters are on the order
of the electrode separation. This distance is typically much greater than the vertical
transition across the water table, which is typically on the order of centimeters, so that
the transition of electrical properties across this boundary is effectively discontinuous
relative to the discretization of the inverted resistivity profiles. The third assumption is
that the observational data must have sensitivity to each region that the discontinuity
delineates. If the data is not sensitive to any regions separated by a boundary, then the
data is not likely sensitive to the boundary itself, and implementing a regularization
operator into the inversion process will not provide a significant benefit to the problem.

3.2. The Two-Dimensional Problem

Our synthetic results include inversions of electrical resistivity tomography for a variety
of resistivity distributions within the subsurface. The models in these problems are
two dimensional and Occam’s method is used to solve the nonlinear optimization
problem with cost function:

φ(m) = ||Wd(d− F[m])||22 + α2[||Lpxm||22 + ||Lpzm||22]

where Lpx and Lpz are derivative operators in the x and z spatial directions. In two
dimensions, there are two regularization matrices Rx and Rz that identify boundaries
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Figure 4. Inverted parameters and their derivatives in linear variability simple example, Figure 1(a). L1

enforced exactly in (a)-(c), L2 constraint enforced exactly in (d)-(f). Red boxes indicate exact constraint used

for inversion.

in each direction. The cost function with boundary information becomes

φ(m) = ||Wd(d− F[m])||22 + α2[||RxLpxm||22 + ||RzLpzm||22].

3.3. Occam’s Method

Occam’s method is a commonly used technique in geophysics for nonlinear inversions
[7], [9]. It requires an initial iterate m(0) so that Taylor’s theorem gives a local linear
approximation of F[m]. The objective function becomes

φk(m(k+1)) = φd(k) + α2[φmx(k) + φmz(k)]

= ||Wd(d̂(k) − J(k)m(k+1)])||22 + α2[||RxLpx(m(k+1) −mref )||22
+||RxLpz(m(k+1) −mref )||22]

with J(k) the Jacobian of F evaluated at m(k) and

d̂k = d− F[m(k)] + J(k)m(k).

At each iterate, the minimum of the linear cost function occurs at:

m(k+1) = [α2(LT
pxR

T
xRxLpx + LT

pzR
T
z RzLpz) + JT

(k)W
T
d WdJ(k)]

−1[JT
(k)W

T
d Wdd̂(k)

−α2(LT
pxR

T
xRxLpx + LT

pzR
T
z RzLpz)mref ].

Occam’s method uses the discrepancy principle in order to find the regularization
parameter α, i.e. α is found so that:

φd(m(k+1)) ≤ ∆.
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Figure 5. Inverted parameters and their derivatives in linear variability simple example, Figure 1(a). RL1

enforced exactly in (a)-(c), RL2 constraint enforced exactly in (d)-(f). Red boxes indicate exact constraint

used for inversion.

The choice of ∆ is often left as an open question. If the data misfit is considered as a χ2

random variable, its mean can be used for ∆. In this case the degrees of freedom (and
its mean) is m−n, where m is the number of data and n is the number of parameters.
For m ≈ n this approach is not practical and the χ2 method [21, 22] that uses the
regularized residual can be used. In the χ2 method α is found so that:

φ(m(k+1)) ≈ χ̄ 2
m = m.

Not only does the χ2 method give a statistical justification for the choice of α, we
suggest that it is important to include this sensitivity towards the constraint when
choosing the regularization parameter because it will be more sensitive to the type
of constraint used within the inversion process. If a good estimate of the boundary
location is properly implemented into the regularization matrix, then ||RLpmtrue||22
will be small relative to other potential estimates of the boundary contained in R.
This implies inverted results should reflect a greater weight on minimizing the regu-
larization residual. Therefore, if the presence of a sharp boundary is known prior to
data acquisition or processing but not the exact location, then a variety of boundary
estimates will provide different regularization parameters, which will yield different in-
verted results. The inverted result with the largest regularization parameter found by
the χ2 test will indicate that the associated boundary estimate is the most probable.
This will be explored in future work.

4. Numerical Results

4.1. The Forward Model: Ohm’s Law

Electrical resistivity tomography is used to approximate two or three dimensional
models of electrical resistivity within the subsurface. This geophysical method has
proven to be useful for a wide variety of subsurface investigations including salt water
intrusions [13, 14, 29], tracer studies [18, 24, 27, 31], and vadose zone soil moisture
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analysis [5, 8, 23].
Resistivity data is acquired by distributing either a line or grid of electrodes along

the surface. A pair of transmitting electrodes are used to induce a low frequency,
alternating current, into the ground. A separate pair of receiver electrodes measure
the potential difference elsewhere. The ratio of the injected current and the measured
voltage, combined with the electrode geometry, yields the measured result known as
the apparent resistivity and is given by:

ρa =
2π∆V

i
κ

where

κ = 1/(1/∆xAM − 1/∆xAN − 1/∆xBM + 1/∆xBN ).

The variable κ is known as the geometric factor that contains all of the geometrical
information of the electrodes, ∆V is the electrical potential different across the receiver
electrode pair, i is the injection current, and ∆xAN represents the distances between
the current electrodes A and B and the voltage electrodes M and N, see Figure 6.
The apparent resistivity is equivalent to what would be measured for a homogeneous
subsurface. These values are treated as observational data and can be inverted to yield
an approximate model of the subsurface resistivity ρ.

i

V

A M N B

Figure 6. The Wenner-alpha electrode configuration.

The governing equation that provides the relationship between the resistivity in the
subsurface and the measured apparent resistivity is Ohm’s Law:

∇ · [σ(r)∇V (r)] = i[δ(r− rA)− δ(r− rB)]

where σ = 1/ρ is the conductivity. The variables rA and rB represent the three
dimensional (x, y, z) locations of current source electrodes A and B, respectively.

This study implements a Matlab-based 2.5D forward model developed by Adam
Pidlisecky and Rosemary Knight [25], where the Fourier-transform is used in the y
direction so that resistivity varies along a horizontal x and vertical z dimensions
while the y dimension has constrained variability. The two-dimensional model takes
the form:

∂

∂x
[σ(x, z)

∂V (x, z)

∂x
] +

∂

∂z
[σ(x, z)

∂V (x, z)

∂z
] − λ2

yσ(x, z)V (x, z)

= i [δ(x− xA)− δ(x− xB)]

where λy represents the spatial wavenumber in the y direction, which represents the
degree of variability in the y direction. This code was altered to allow conversions
from electrical potential values at receiver electrode positions to apparent resistivity
observations from given electrode combinations for wenner-alpha arrays [6].
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The input to the forward model takes a given resistivity model

m = ρ(x, z), m ∈ Rn.

and with a distribution of current source locations, yields electrical potential at all
locations. The associated output is converted into a set of apparent resistivity values:

F [m] = ρa, F [m] ∈ Rm.

Therefore, the inversion of resistivity data takes measured apparent resistivities d as
input so that

d = F [m] + ε,

with noise ε. In this study, we use synthetic measurements and represent ε as Gaussian
noise. Even though this assumption may not be true for particular scenarios encoun-
tered in the field, it is a common assumption and will be applied in this study.
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Figure 7. True resistivity values for a layered subsurface
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Figure 8. True resistivity values for an anomaly model
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Figure 9. True resistivity values for sinusoidal model
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4.2. Synthetic Results

In this section, we provide inverted results from three fundamental model types: 1) two-
layered models in Figure 7, 2) anomaly models in Figure 8, and 3) sinusoidal models in
Figure 9. By considering both constant and linear variability in all three model types, a
total of seven models were used for our synthetic analysis. These model types represent
the challenge in ERT inversion with respect to the sensitivity of the observational data
to 1) subregions distant from the observations, 2) subregions with small anomalies, and
3) complex subregion boundary geometry. We compare results from standard 0th, 1st,
and 2nd derivative constraint inversions to those that use discontinuous regularization
operators. In each model 0.1% Gaussian noise was added to each data sample to create
the synthetic observations. Four different resistivity values were estimated from each
of the seven sets of synthetic data, and are denoted by mL0

, mL1
, mL2

, mRL0
, mRL1

,
and mRL2

as defined in Section 2.3.

4.2.1. Two-Layered Models
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Figure 10. Inverted resistivity values for a layered subsurface with piecewise constant variability
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Figure 11. Inverted resistivity values for a layered subsurface with piecewise constant variability with data
and inversion on different grids.
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Figure 12. Inverted resistivity values for a layered subsurface with strong linear variability
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(c) Layered model with

piecewise constant variabil-
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Figure 13. Average vertical resistivity of inverted models

The two-layered models in Figure 7 contain subregions distant from observations
recorded at the surface that range in sensitivty. The inverted results are provided in
Figures 10 - 12. Figure 10 is the simplest of the three models and we see that the
standard 0th, 1st, and 2nd derivative constraints exhibit significant smearing indicated
by the red lines in Figures 10 (a)-(c). With knowledge of the boundary location at 7m
depth, the discontinuous 1st and 2nd derivative constraints provide a more accurate
representation of the true model, whereas the 0th derivative constraint does not. The
excellent quality of the reconstruction with the 1st and 2nd derivative constraints may
be due to the inverse crime we have committed where the simulated data are on the
same grid as the inverted results. Therefore, we ran the synthetic experiment with
data generated on a different grid than the inversion. The data grid had a fixed height
of 1 meter while the model grid starts at 1.75 meters at the surface and increases with
depth. The results are in Figure 11 and are similar to those in Figures 10(b),(c),(e)
and (f). In particular we see that including boundary information with 1st and 2nd

derivative constraints still results in a superior inverted result, and therefore addresses
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(a) Layered model with piecewise constant variability:
mL1

and mRL1

(b) Layered model with piecewise constant variabil-
ity: mL2

and mRL2

Figure 14. Average vertical resistivity of inverted models with data and inversion different grids.

the noise amplification of the data due to the ill-posedness of the problem.
Regardless of whether the data are generated on the same or different grid than

the inverted results, we note that prior boundary knowledge incorporated as an initial
parameter estimate gives significantly worse results than regularization with RL1 and
RL2. This point is counter to most approaches where derivate constraints are used to
smooth solutions, not to reconstruct discontinuities. It is also consistent with results
in Section 2.3 for the idealized canonical model. Therefore, we focus on the ability
of the regularization operator R to delineate different subregions with 1st and 2nd

derivative constraints. These results can be observed more clearly through vertical
slices representing the average horizontal resistivity with depth, provided in Figures
13 (a)-(c). These Figures show the smearing located near the discontinuity that takes
place with standard regularization, whereas the additional regularization operator is
able to capture the discontinuity. We see in Figure 14 that these conclusions still hold
when the data are generated on a different grid than the inversion.

Two different amounts of linear variability were added to the two layered model
which we call moderate and strong linear variability and are plotted in Figures 7 (b)-
(c). The inverted results with the moderate variability model are similar to those with
piecewise constant variability and so we omit the results. Inverted results in Figure 12
with strong variability show smearing so severe in the standard inversions that it is
difficult to delineate the location of the discontinuity or detect the presence of linear
variability. When the discontinuity is implemented with the 1st and 2nd derivative
constraints operator, linearity is clearly observed within the upper subregion. However,
inspection of vertical slices in Figures 13 (d)-(f) show a lack of linear variability in
the lower subregion for all inverted types relative to the true model. This is likely
due to a lack of sensitivity in the data, which implies that the degree of variability
could limit the performance of the regularization operator. In these inverted results we
find that mRL2

performed the best and mRL0
performed the worst. This difference in

performance is evident in both subregions, where mRL2
produced the most accurate

amount of linearity relative to the true model.
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Figure 15. Inverted resistivity values for an anomaly model with piecewiseconstant variability.
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Figure 16. Inverted resistivity values for anomaly model with moderate linear variability

4.2.2. Anomaly Models

The anomaly models in Figure 8 contain a less sensitive subregion that covers a small
area relative to the rest of the model. The inverted results in Figure 15 (a)-(b)
show the continued pattern of smearing produced from standard inversions, whereas
the incorporation of the proper boundary significantly improves this effect as seen in
Figures 15 (c)-(d). The vertical slices in Figures 17 (a)-(b) show a drastic improvement
in performance with the implementation of the regularization operator when compared
to the standard inverted results. These Figures also show that the RL1 constraint
produced a better result than the RL2 constraint, which produced artificial linear
variability in the region below the anomaly.

The inverted results from the anomaly model with moderate linear variability are
provided in Figure 16. The standard inverted parameters show the same smearing
pattern, although both 1st and 2nd derivative constraints are able to produce some
degree of linearity reflected in the true model. However, when the boundary location
is provided in the inversion, smearing is greatly reduced and the degree of linearity has
a stronger presence. The sensitivity to linearity is more clearly seen in the vertical slices
provided in Figures 17 (c)-(d). These results show that the standard inversions indeed
recover a significant amount of the linear variability, however the degree of accuracy
is not as significant when compared to the results produced from the incorporation of
the discontinuity. These results also show that mRL1

performed slightly better than
mRL2

particularly in the region just below the anomaly.
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Figure 17. Average vertical resistivity of inverted models

4.2.3. Sinusoidal Models
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Figure 18. Inverted resistivity values for sinusoidal model with piecewise constant variability

The primary challenge with the sinusoidal models is the presence of a complex
boundary geometry. The standard inversions in Figures 18 show the continued pres-
ence of smeared results and can only provide a general interpretation of the true model.
However, the inverted results that contain the proper discontinuity removed a large
degree of smearing. This is true for both 1st and 2nd derivative constraints, where
the degree to which they converged to the true model is comparable. When moderate
linear variability is introduced, the results in Figure 19 show significant improvement
when the location of the discontinuity is incorporated in the inversion. Not only is a
significant amount of smearing present in the standard inversions, but there is no clear
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Figure 19. Inverted resistivity values for sinusoidal model with linear variability

indication of linear variability in the subregions. The discontinuous inversions recover
most of the linear variability, particularly in the upper subregion. In these results, we
see that the RL2 constraint performed better than the RL1 constraint, because it
was able to capture the linear variability.

5. Discussion

These results show that the implementation of known discontinuities in the inversion
process as described in Section 2 is likely to yield more optimal results, regardless
of partial sensitivity between the observational data and subregions within the model
parameters due to either subregions being far away from the observations, subregions
with a small area of extent, or even a complex boundary geometry. The results also
show how data sensitivity can limit the performance of implementing discontinuities
in an inversion. We observed this in the two-layered model with a high degree of linear
variability, where a bias is present in the lower subregion even with the implementation
of the RL2 constraint term (Figure 13 (f)).

These results also show that incorporating discontinuity information with a 1st

or 2nd derivative constraint is superior to incorporating the information with a 0th

derivative constraint. While mRL0
performed better than mL0

, the 1st or 2nd constraint
results mRL1

and mRL2
showed large performance gains relative to mRL0

. In order
for the 0th derivative constraint to effectively incorporate boundary information, the
initial parameter estimate must be very accurate, which is not practical. Alternatively,
incorporating boundary information with a 1st or 2nd derivate constraint only requires
the location of the boundary, and not initial parameter value estimates.

We also found a small degree of variability between the performance of the 1st

and 2nd derivative constraints. The 1st derivative constrained inversions performed
better where the true models had little variability within each subregion, whereas
the 2nd derivative constrained inversions performed better where the true models had
significant linear variability. This is consistent with the canonical examples in Section
2.3. The primary difference between the canonical examples and the synthetic results
is the degree of sensitivity, where the sensitivity was ideal in the canonical example,
and lesser in the synthetic results. In fact, we suggest that this partial sensitivity
explains why certain models, such as the two-layered model with piecewise constant
variability had 2nd derivative constraint results with linear variability even though
the true model had only piecewise constant variability within each subregion.
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6. Conclusions and Future Work

Tikhonov regularization with first and second derivative constraints is typically used to
produces smooth inverse estimates [2]. This work explains how to produce discontinu-
ous estimates with Tikhonov regularization through a diagonal regularization operator
R with ones everywhere except at locations representing a discontinuity. Multiplying
the regularization term by R removes the influence of the constraint on targeted re-
gions for one dimensional problems and we extended the approach to two dimensions.
In particular, we show how to identify the location of boundaries through 1st and 2nd

derivative constraints. Moreover, we explain why boundary locations should be iden-
tified through first and derivative constraints and not included as prior knowledge in
an initial parameter estimate.

An understanding of the influence of R on the regularization term gives insight
to the effect of regularizing with a first derivative (L1) or second derivative (L2)
constraint. We firstly noted that L1 and L2 regularization are more practical than
L0 for discontinuous inversions since they require less prior information. Secondly we
found that the L1 constraint is the best choice when the true model contains constant
variability in subregions. Alternatively, if there is linear variability in subregions the
L2 constraint is optimal. In particular, we showed that if there is a lack of sensitivity
between the observations and particular subregions, then L1 will necessarily produce
piecewise constant variability while L2 will produce linear variability in the subregions.

We have provided an in depth analysis of the incorporation of sharp discontinu-
ities with least squares so that it can be applied to more practical problems. It may
be counter intuitive to use least squares for sharp discontinuities. However, by incor-
porating a matrix R, piecewise, continuous results are obtained and hence we have
shown exactly how least squares can most effectively capture discontinuities. When
dealing with real data where prior knowledge is not perfectly known (i.e. the loca-
tion of a boundary), more elaborate techniques are required to appropriately weight
such prior information. This is typically accomplished by a covariance matrix that
acts on the constraint in the regularization term. For example, it has been shown that
the covariance matrix can be formed from variogram estimates of the model param-
eters [14]. However, this approach finds a covariance matrix for the 0th derivative of
the model parameters. We have shown it is more advantageous to use 1st and 2nd

derivative constraints for problems with discontinuities. Therefore, a more appropri-
ate implementation in this setting would be to construct a variogram of the 1st or 2nd

derivative of the model parameters. This will be the focus of future work, where we
incorporate inexact boundaries with real data.
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