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Abstract. State estimates from weak constraint four-dimensional variational (4D-Var) data4
assimilation can vary significantly depending on the data and model error variance. As a result,5
the accuracy of these estimates heavily depends on the correct specification of both model and6
observational data error variances. In this work, we assume that the data error is specified and frame7
weak constraint 4D-Var as a regularization inverse problem, with the scalar model error variance as8
the regularization parameter. We employ the representer method to reduce the 4D-Var solution9
search space from the state space to the data space, which provides an analytical expression for the10
optimal state estimates. This method allows us to derive matrix expressions for three regularization11
parameter selection methods: the L-curve, generalized cross-validation (GCV), and the χ2 method,12
used to estimate the model error variance. We validate our approach by assimilating simulated data13
into a 1D transport equation modeling wildfire smoke transport under various observational noise14
and first guess perturbations. The results show that the estimated model error variances accurately15
capture the balance between the influence of observational data and model predictions on assimilated16
state estimates.17

Key words. variational data assimilation, weak constraint, model error variance, inverse meth-18
ods, regularization parameter19

AMS subject classifications. 65K10, 65F2220

1. Introduction. Data assimilation is an important tool for analyzing complex21

physical phenomena across various scientific disciplines, such as geoscience, oceanogra-22

phy, and atmospheric sciences among others [6]. At its core, data assimilation merges23

theory, mathematical models, and observations to provide a more accurate estimation24

of a system’s state. While dynamical models provide insights into physical interactions25

and observations provide point measurements, combining both through data assimi-26

lation results in a more robust and realistic depiction of the physical phenomena in27

play. This integration offers a clear advantage over relying solely on estimates from28

either the model or observations alone, as models often face numerous limitations and29

challenges and observations are frequently sparse and incomplete [2, 3, 16, 18, 21, 26].30

Data assimilation methods can be broadly categorized into sequential and vari-31

ational approaches. Sequential methods, such as the particle filter, Kalman Filter,32

Extended Kalman Filter (EKF), and Ensemble Kalman Filter (EnKF), are derived33

from stochastic filtering principles and Bayesian minimum variance estimation. These34

methods continually update system state statistics as new observations become avail-35

able, propagating the system state forward in time [11, 14, 27]. Variational methods,36

on the other hand, are grounded in optimal control theory and calculus of varia-37

tions. These methods include 3D-Var (three-dimensional variational) and 4D-Var38

(four-dimensional variational) approaches. The 3D-Var method optimizes the cost39

function using observations from a single time window, focusing solely on spatial40

dimensions while as the 4D-Var method extends this optimization to include the tem-41

poral dimension, considering how the system evolves over time. This makes 4D-Var42

particularly advantageous for systems with complex temporal dynamics, where se-43

quential methods may struggle [8, 17, 28].44
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In 4D-Var data assimilation, the model is corrected in both spatial and tempo-45

ral dimensions using either strong or weak constraint formulations. In the strong46

constraint formulation, it is assumed that the numerical model is perfect, meaning47

there are no errors in the model dynamics. The cost function is minimized under48

the assumption that any discrepancies between the model and the observations are49

solely due to observational errors. Conversely, the weak constraint formulation allows50

for the presence of model errors, acknowledging that the model dynamics may not51

perfectly represent the true system due to errors that may arise from parameteri-52

zation, unresolved processes in the forcing, and other factors. In this case, the cost53

function includes additional terms that account for model errors, which is particularly54

advantageous for large-scale models that may not fully capture the intricacies of real-55

world systems [32, 33]. According to [35], weak constraints 4D-Var data assimilation56

often yields accurate results because it includes more information than the strong57

constraints method and is capable of altering the dynamics of a given model while58

fitting observations.59

Optimizing the cost function for weak constraint 4D-Var continuous data as-60

similation results in a system of coupled Euler-Lagrange equations, which can be61

decoupled using the representer method. The representer method leverages the finite-62

dimensional nature of the observation space to express the optimal state estimates as a63

linear combination of representers, one per datum thereby reducing the solution search64

space from the state space to the data space. [4, 7, 20, 25]. State estimates obtained65

using weak constraint 4D-Var with representers can vary significantly depending on66

the choice of data and model error variances. The accuracy of these state estimates67

heavily relies on properly specifying model and observational data error variances,68

which is challenging due to large system dimensions and insufficient observations. In69

this work, we propose a principled approach to determining the optimal model error70

variance by treating weak-constraint 4D-Var as a regularized inverse problem.71

Inverse methods, of which data assimilation methods are fundamentally a subset,72

are mathematical techniques used to estimate model parameters from observable data.73

Inverse methods typically invert the forward model for unknown parameters, while74

data assimilation typically seeks initial conditions, boundary conditions, and states75

from measured outputs of complex systems. Inverse problems can be classified as76

either well-posed or ill-posed. A problem is well-posed if a solution exists, is unique,77

and changes continuously with the input data, whereas a problem is ill-posed if it lacks78

one or more of these properties. In practice, most inverse problems are ill-posed. The79

most common cause of ill-posedness is non-uniqueness, which typically arises when the80

number of parameters to be estimated exceeds the amount of available observational81

data, which is often the case in data assimilation problems. Because inverse problems82

are often ill-posed, they cannot be solved without specifying certain assumptions or83

constraints in form of regularization. Therefore, the main goal of inverse methods is84

to develop regularization approaches that transform ill-posed problems into a well-85

posed ones [10, 30, 34]. Common regularization techniques include Bayesian methods,86

which incorporate prior knowledge about the parameters into the solution process, and87

Tikhonov regularization, which adds a penalty term to control the magnitude of the88

parameters. Both techniques are often formulated as least-squares problem with an89

L2-norm regularization term.90

Regularization parameter selection methods are used to determine the influence91

of the regularization term and balance the trade-off between it and the fit to the ob-92

servational data. Methods such as the L-curve, Generalized Cross-Validation (GCV),93

and the χ2 method provide systematic approaches for selecting this parameter. The94

This manuscript is for review purposes only.



MODEL ERROR VARIANCE ESTIMATION FORWEAK CONSTRAINT DATA ASSIMILATION3

L-curve method involves plotting the norm of the solution against the norm of the95

residuals to identify a corner point that represents their optimal balance [15]. General-96

ized Cross-Validation (GCV) minimizes the prediction error by systematically leaving97

out parts of the data and estimating the error [13]. The χ2 method ensures that98

the regularized residual behaves like the expected distribution [23, 22, 24, 29]. These99

methods ensure that the chosen regularization parameter effectively stabilizes the so-100

lution while maintaining an accurate fit to the observational data, thereby enhancing101

the overall solution’s stability and accuracy [1, 9, 12, 31].102

We leverage the regularization parameter selection methods(L-curve, General-103

ized Cross-Validation (GCV), and the χ2 method) to estimate dynamic model error104

variance. The elegance of the representer method seamlessly integrates with these105

regularization parameter selection techniques, enabling efficient computations. By106

calibrating the model error variance in this way, our approach paves the way for ro-107

bust and reliable state estimation through weak-constraint 4D-Var data assimilation,108

even in the face of substantial model and observational uncertainties.109

This article is structured as follows: In section 2, we provide a brief overview110

of weak constraint 4D-Var data assimilation with the method of representers. In111

section 3, we derive the reduced penalty functionals that result when using the method112

of representers. Given these reduced penalty functionals, in section 4, we present weak113

constraint data assimilation as a regularization inverse problem problem and derive114

regularization parameter selection methods that can be used to estimate the optimal115

model error variance. Numerical experiments using this approach are presented in116

section 5. Finally, we give conclusions in section 6.117

2. Weak Constraint 4D-Var Data Assimilation with Representers. We118

demonstrate weak constraint 4D-Var data assimilation using the model119

(2.1)

∂q

∂t
+ L[q(x, t)] = Q(x, t) for x ∈ Ω, t ∈ [0, T ]

q(x, 0) = I(x)

q(0, t) = B(t)

120

where operator L[q(x, t)] represents the dynamics and physics that are linear or non-121

linear in nature, Q(x, t) represents the forcing, I(x) is the initial state and B(t)122

represents the boundary conditions.123

We assume that imperfect data are available at a limited number of points124

(xm, tm), collected at M points in space and time. These observations are related125

to the “true” state q(x, t) by126

(2.2) dm = q(xm, tm) + ϵm m = 1, 2, · · · ,M127

where ϵm ∼ N (0, σ2
m) is the measurement error with error variance σ2

m.128

In weak-constraint 4D-Var data assimilation, we account for errors in the model,129

which may arise from neglected dynamics, inaccuracies in parameterization of the130

physics, truncation, uncertainty in the forcing etc, i.e.131

(2.3)

∂q

∂t
+ L[q(x, t)] = Q(x, t) + f(x, t) for x ∈ Ω, t ∈ [0, T ]

q(x, 0) = I(x) + i(x)

q(0, t) = B(t) + b(t)

132
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where f(x, t), i(x) and b(t) are errors in the model dynamics, in the initial and133

boundary conditions with variances σf
2, σi

2, and σb
2 respectively. These errors are134

assumed to be unbiased and mutually uncorrelated.135

Since the core reason for data assimilation is to obtain the optimal state estimates136

that best fit the model and the observations, we minimize the weighted least-squares137

cost function J with respect to the state variable q(x, t). We seek to find the state138

estimate q̂(x, t) that corresponds to the smallest values of f ,i,b and ϵm, i.e.139

(2.4) q̂(x, t) = argmin
q

J [q]140

where141

J [q] = Wf

∫ T

0

∫
Ω

{
∂q

∂t
+ L[q(x, t)]−Q(x, t)

}2

dxdt

+Wi

∫
Ω

{
q(x, 0)− I(x)

}2
dx+Wb

∫ T

0

{
q(0, t)−B(t)

}2
dt

+

M∑
m=1

wm

{
q(xm, tm)− dm

}2

.(2.5)142

The weights Wf , Wi, Wb, and wm are assumed to be the inverses of the error variances143

in the model dynamics, initial and boundary conditions, and data respectively. Due144

to the lack of observations at all points in space and time, the error fields f(x, t), i(x)145

and b(t) are undetermined. However with appropriate weights for f(x, t), i(x) and146

b(t), there is a unique optimum q̂(x, t) that minimizes the errors f(x, t), i(x), b(t),147

and ϵm in a weighted least-squares sense. Given that J is non-negative and quadratic148

in q, we find the global minimum using calculus of variations. This results in coupled149

Euler-Lagrange equations (2.6).150

The result in this work applies to any linear operator L; however, the Euler-151

Lagrange equations will change depending on the type of boundary conditions used.152

Therefore, we omit boundary condition errors from this point to section 3 for gener-153

alization purposes.154

−∂λ

∂t
− LTλ(x, t) = −

M∑
m=1

wm(q̂(xm, tm)− dm)δ(x− xm)δ(t− tm)

λ(x, T ) = 0

∂q̂

∂t
+ Lq̂(x, t) = Q(x, t) +W−1

f λ(x, t)

q̂(x, 0) = I(x) +W−1
i λ(x, 0)

(2.6)155

where δ(x) is the Dirac delta function and the adjont variable λ(x, t) = Wf

{
∂q̂
∂t +156

Lq̂(x, t)−Q(x, t)

}
and we assume that the operator L has been linearized.157

The coupled system of equations (2.6) requires λ to be solved backward in time158

and the optimal estimate q̂ forward in time. We simplify this linear system of equation159

by using the the representers method [4]. The representer method decouples (2.6) and160

the optimal solution q̂ is expressed as the sum of a first guess qF and a finite linear161
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combination of representer functions rm(x, t),162

(2.7) q̂(x, t) = qF (x, t) +

M∑
m=1

βmrm(x, t) ∈ R1.163

The first guess qF is the solution to the error-free model (2.1) and the representer164

functions rm(x, t) form a reproducig kernel Hilbert space. Substituting (2.7) into the165

Euler-Lagrange equations we get decoupled systems166

(Fm)

{
∂rm
∂t + Lrm(x, t) = W−1

f αm(x, t)

rm(x, 0) = W−1
i αm(x, 0)

(2.8)167

and168

(Bm)

{
−∂αm

∂t − LTαm(x, t) = δ(x− xm)δ(t− tm)

αm(x, T ) = 0
(2.9)169

where αm(x, t) is the adjoint corresponding to rm(x, t). We solve for αm(x, t) back-170

ward in time and then use it to solve forward in time rm(x, t), 1 ≤ m ≤ M . We find171

the representer coefficients βm by substituting (2.7) back into the Euler-Lagrange172

equations. The result is M equations for unknowns β = [β1, β2, · · · , βm]T which are173

written in matrix notation as174

(2.10) (R+W−1
d )−1β = h ∈ RM

175

where R is the M×M representer matrix evaluated where there is data, i.e. Rm1m2
=176

r1(xm2 , tm2), h = d − qFm, qFm = [qF (x1, t1), qF (x2, t2), · · · , qF (xM , tM )]T and177

Wd = diag(w1, w2, . . . , wM ) is the data weight matrix. Substituting for βm in (2.7),178

the optimal state estimate can be expressed as179

(2.11) q̂(x, t) = qF (x, t) + hTP−1r(x, t)180

where P = R+W−1
d and r(x, t) = [r1(x, t), r2(x, t), · · · , rM (x, t)]T .181

The representer method finds the optimal state estimate by solving the linear182

transport model backward in time M times for αm(x, t) and forward M times for183

rm(x, t). This makes weak constraint 4D-Var more computationally feasible because184

the optimal adjoint in the state space is determined by the optimal representer coef-185

ficients in the data space, which is much smaller than the state space.186

3. Reduced Posterior Penalty Functionals. In this section we use the an-187

alytical expression for optimal estimates (2.11) found using the representer method188

to explicitly express the penalty functionals evaluated at the optimum. These ex-189

pressions for the reduced penalty functionals are necessary for section 4 where we190

derive methods to estimate model error variance based on regularization parameter191

selections methods. The results in this section are given in [4].192

Jmod[q̂] = Wf

∫ T

0

∫
Ω

{
∂q̂

∂t
+ Lq̂(x, t)−Q(x, t)

}2

dxdt

+Wi

∫
Ω

{
q̂(x, 0)− I(x)

}2
dx

(3.1)193
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and194

(3.2) Jdata[q̂] =

M∑
m=1

wm

{
q̂(xm, tm)− dm

}2
195

so that
J [q̂] = Jmod[q̂] + Jdata[q̂]

.196

Lemma 3.1. The data penalty satisfies197

(3.3) Ĵdata ≡ Jdata[q̂] = hTP−1W−1
d P−1h198

Proof. Writing (3.2) in matrix form we have199

(3.4) Ĵdata =
(
q̂− d

)T
Wd

(
q̂− d

)
.200

Subsititing (2.7) into the Euler-Lagrange equations and equating coefficients of the201

impulses, the representer coefficients β̂ can be written as β̂ = Wd(q̂− d). Thus202

(3.5) Ĵdata = β̂
T
W−1

d β̂.203

Using (2.10), we have204

(3.6) Ĵdata =
(
(R+W−1

d )−1h
)T

W−1
d

(
(R+W−1

d )−1h
)

205

Noting that P = R+W−1
d is symmetric, the result then follows.206

Lemma 3.2. The model penalty satisfies207

(3.7) Ĵmod ≡ Jmod[q̂] = hTP−1RP−1h208

Proof. Substituting q̂(x, t) (2.11) into the penalty functional (3.1), we have209

Ĵmod = Wf

∫ T

0

∫
Ω

{
∂qF
∂t

+ LqF (x, t)−Q(x, t)

+ hTP−1

(
∂r(x, t)

∂t
+ Lr(x, t)

)}2

dxdt

+Wi

∫
Ω

{
qF (x, 0)− I(x) + hTP−1r(x, 0)

}2
dx

(3.8)210

Since the first guess qF (x, t) is the solution to the error-free model (2.1), we have211

Ĵmod = hTP−1

{
Wf

∫ T

0

∫
Ω

(
∂r

∂t
+ Lr(x, t)

)(
∂r

∂t
+ Lr(x, t)

)T

dxdt

+Wi

∫
Ω

r(x, 0)r(x, 0)T dx+Wb

∫ T

0

r(0, t)r(0, t)T dt

}
P−1h

(3.9)212

Given that r(x, t) is the solution to (2.8)213

Ĵmod = hTP−1

{
W−1

f

∫ T

0

∫
Ω

α(x, t)α(x, t)T dxdt

+W−1
i

∫
Ω

α(x, 0)α(x, 0)T dx

}
P−1h

(3.10)214
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where α(x, t) = [α1(x, t), α2(x, t), · · ·αM (x, t)]T . The adjoint representer function215

αm(x, t) for a point measurement (xm, tm) is the Green’s function γ(x, t,xm, tm)216

where γ(x, t,y, s) satsifies217

L∗γ(x, t,y, s) ≡ −∂γ(x, t,y, s)

∂t
− LT γ(x, t,y, s) = δ(x− y)δ(t− s)

γ(x, T,y, s) = 0
(3.11)218

The corresponding representer functions rm(x, t) = Γ(x, t,xm, tm) where219

LΓ(x, t,y, s) ≡ ∂Γ(x, t,y, s)

∂t
+ LΓ(x, t,y, s) = W−1

f γ(x, t,y, s)

Γ(x, 0,y, s) = W−1
i γ(x, 0,y, s)

(3.12)220

Integrating
∫ T

0

∫
Ω
γLΓ dz dr by parts and using dummy variables z and r, we obtain221 ∫ T

0

∫
Ω

γLΓ dz dr =

∫
Ω

γ(z, r,x, t)Γ(z, r,y, s)

∣∣∣∣T
0

dz

+

∫ T

0

∫
Ω

Γ(z, r,x, t)L∗γ(z, r,y, s) dz dr

(3.13)222

Substituting L∗γ(z, r,y, s) = δ(z− y)δ(r − s) we obtain223

Γ(x, t,y, s) =

∫ T

0

∫
Ω

γ(z, r,x, t)LΓ(z, r,y, s) dz dr −
∫
Ω

γ(z, r,x, t)Γ(z, r,y, s)

∣∣∣∣T
0

dz

(3.14)

224

Substituting for LΓ(z, r,y, s) and Γ(z, 0,y, s) and evaluating at the data points, we225

have226

Γ(xm, tm,xl, tl, ) = W−1
f

∫ T

0

∫
Ω

γ(zm, rm,xm, tm)γ(zm, rm,xl, tl, )dzdr

+W−1
i

∫
Ω

γ(zm, 0,xm, tm, )γ(zm, 0,xl, tl, )dz

(3.15)227

228

Γ(xm, tm,xl, tl) = W−1
f

∫ T

0

∫
Ω

αl(xm, tm)αl(xm, tm)dxdt

+W−1
i

∫
Ω

αl(xm, 0)αl(xm, 0)dx

= Rlm

(3.16)229

If we consider for all l,m we have230

R = W−1
f

∫ T

0

∫
Ω

α(x, t)α(x, t)T dxdt+W−1
i

∫
Ω

α(x, 0)α(x, 0)T dx(3.17)231

Theorem 3.3. The posterior functional Ĵ satisfies232

(3.18) Ĵ ≡ J [q̂] = hTP−1h233
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Proof. Using lemmas (3.1) and (3.2) we have234

Ĵ = hTP−1W−1
d P−1h+ hTP−1RP−1h

= hTP−1
(
R+W−1

d

)
P−1h

= hTP−1h

(3.19)235

4. Weak Constraint as Regularization. In this section, we frame weak-236

constraint 4D-Var data assimilation as a Tikhonov regularization problem. This ap-237

proach allows us to treat model error variance estimation as a regularization parameter238

selection problem. We use three established regularization parameter selection meth-239

ods i.e. the L-curve[15], the χ2 method [4, 23], and the generalized cross-validation240

(GCV) method [1, 13] to estimate the model error variance.241

4.1. Tikhonov regularization. Consider the parameter estimation problem242

(4.1) d = Ax+ ϵ,243

where d is the observational data, A is the operator mapping the model parameters244

to the observation space, and ϵ accounts for the errors in the data. We assume a first245

guess, x0, for the parameters, such that:246

(4.2) x = x0 + f ,247

where f represents the unknown errors in the first guess. In Tikhonov regularization,248

the goal is to find x that minimizes errors in both the data and the first guess in a249

weighted least-squares sense. This is expressed as:250

(4.3) x̂ = argmin
x

{
(Ax− d)TWd(Ax− d) + (x− x0)

TWf (x− x0)
}
.251

Here, Wd and Wf are weighting matrices that account for the relative uncertainties252

in the data and the first guess respectively. We express Wf as λI, where λ is the253

regularization parameter. The optimal parameter estimates, x̂, that minimize (4.3)254

are given by:255

(4.4) x̂ = x0 + (ATWdA+Wf )
−1ATWd(d−Ax0),256

In the context of weak constraint data assimilation, the optimal state estimate takes257

on the form258

q̂ = argmin
q

{ M∑
m=1

wm

[
q(xm, tm)− dm

]2
+Wi

∫
Ω

[
q(x, 0)− I(x)

]2
dx

+Wb

∫ T

0

[
q(0, t)−B(t)

]2
dt+Wf

∫ T

0

∫
Ω

[
∂q

∂t
+ L[q(x, t)]−Q(x, t)

]2
dxdt

}
.

(4.5)

259

This formulation can be viewed as a Tikhonov regularization problem, where the260

regularization term reflects the weakly constrained model dynamics. Using the rep-261

resenter method, we can express the optimal state estimate in a closed form, similar262

to the parameter estimation problem i.e.263

(4.6) q̂(x, t) = qF (x, t) + r(x, t)T (R+W−1
d )−1(d− qFm).264
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In this formulation, we assume that the weight Wd = diag
(
w1, w2, · · · , wM

)
, to the265

data is know, as it is typically derived from the characteristics of the data, such as266

measurement errors provided by the instruments or observational systems. These267

errors are either measured directly or inferred based on standard error models for268

the specific application(e.g., Gaussian noise with a known variance). Additionally, we269

assume that the weights Wi and Wb, applied to the initial and boundary conditions270

respectively, are also known or are assumed to be exact. In future work, we plan to271

estimate weights Wi and Wb using regularization parameter selection methods, along272

with the model dynamics error. The only unknown in this case is the weight Wf ,273

which governs the influence of the model dynamics and we find it using regularization274

parameter selection methods.275

4.2. Model dynamics error estimate. When applying regularization tech-276

niques, such as Tikhonov regularization, the challenge lies in determining the optimal277

regularization parameter λ. This parameter controls the trade-off between fitting278

the observational data and ensuring that the solution remains smooth and physically279

meaningful. If the parameter is too small, the solution may overfit the noisy data,280

leading to instability and unrealistic results. On the other hand, if the parameter is281

too large, the solution becomes overly smooth, potentially ignoring important features282

in the data.283

To address this, we use regularization parameter selection methods such as the284

L-curve, generalized cross-validation, and the χ2 method to find the optimal regular-285

ization parameter. These methods provide a systematic way of selecting the regular-286

ization parameter that balances the data fit and the solution’s smoothness, leading to287

more stable and accurate parameter estimates. In the standard Tikhonov regulariza-288

tion problem, regularization parameter selection involves finding λ such that equation289

(4.3) holds and in this case the data misfit is often scaled with Wd = σ−2
d I. Given290

the formulation of the weak constraint data assimilation as Tikhonov regularization,291

we can use these regularization parameter selection methods to choose the model dy-292

namics weights Wf in data assimilation. These weights are effective estimates of the293

error variance in the model dynamics since we assume Wf = σ−2
f .294

4.2.1. L-curve. The L-curve is a graphical technique where the norm of the295

regularized solution is plotted against the residual norm for a range of regularization296

parameters. The name ‘L-curve’ refers to the characteristic L-shaped curve that forms297

for linear problems. The optimal regularization parameter is the one that corresponds298

to the point of maximum curvature, i.e., the ‘corner’ of the L. The regularization pa-299

rameter at this point is optimal in the sense that the errors in the weighted parameter300

misfit and data misfit are balanced.301

For the standard Tikhonov regularization problem, the L-curve is obtained by302

plotting ∥x̂ − x0∥22 against ∥Ax̂ − d∥22, with the regularization parameter λ corre-303

sponding to the corner of the curve. In weak constraint 4D-Var, the L-curve is304

obtained by plotting the regularization norm WfJmod[q̂] against the data305

misfit Jdata[q̂]. When using the representer functions, we can use the matrix expres-306

sion for the regularization norm in Lemma 3.2 and data misfit in Lemma 3.1 to plot307

the L-curve.308

The L-curve approach provides a visually intuitive means of selecting the reg-309

ularization parameter however, it may not always yield a distinct corner, and its310

interpretation can be subjective, relying on visual inspection.311
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(a) L-curve. (b) Curvature of the L-curve

Fig. 1: Illustrative example of model error estimation for 4D-Var with representers
using L-curve and the corresponding curvature of the L-curve as a function of regu-
larization parameter Wf .

Figure 1(a) shows a typical L-curve, where the regularization norm (model error)312

is plotted against the data misfit for different values of model error variance σ2
f .313

The black dot marks the point of maximum curvature, often indicating the optimal314

regularization parameter. Figure 1(b) provides additional insight by plotting the315

curvature of the L-curve as a function of σf , with the peak corresponding to the316

optimal model error variance. However, as noted by Hansen (1999), the L-curve corner317

doesn’t always align with the maximum curvature, especially when the regularization318

norm doesn’t rise sharply for regularization parameters beyond the optimal σ2
f .319

4.2.2. Generalized cross-validation (GCV). The GCV method is a powerful320

technique for selecting the regularization parameter in Tikhonov regularization. The321

key idea behind GCV is to evaluate how well the regularized solution would general-322

ize to new data by systematically leaving out individual observations and measuring323

the resulting prediction error. This approach ensures that the optimal regularization324

parameter chosen minimizes the trade-off between fitting the data and maintaining a325

smooth, stable solution. GCV offers an efficient way to select the optimal regulariza-326

tion parameter by minimizing the prediction error for unseen data.327

In the standard Tikhonov regularization problem, the GCV criterion is typically328

formulated as a function of the regularization parameter and aims to find the value329

of λ that minimizes the GCV function330

(4.7) g(λ) =
M ||Ax̂− d||22

Tr(I−A(ATWdA+ λI)−1ATWd)2
.331

Extending this GCV concept to weak constraint 4D-Var data assimilation, we derive332

a GCV function that can be used to select the regularization parameter Wf = σ−2
f333

associated with the error in the model dynamics.334
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Theorem 4.1. Let Wd = diag
(
w1, w2, · · · , wM

)
and assume that Wi and Wb are335

specified. The generalized cross validation function for weak constraint 4D-Var with336

representers is337

(4.8) g(σf ) = M
hTP−1W−1

d P−1h

Tr(I−R(R+W−1
d )−1)2

.338

339

Proof. Consider a modified weak constraint 4D-Var data assimilation problem340

where we leave out a data point dk:341

(4.9) min
q

{ M∑
m ̸=k

wm

[
q(xm, tm)− dm

]2
+Wi

∫
Ω

[
q(x, 0)− I(x)

]2
dx342

+Wb

∫ T

0

[
q(0, t)−B(t)

]2
dt+Wf

∫ T

0

∫
Ω

[
∂q

∂t
+ L[q(x, t)]−Q

]2
dxdt

}
.343

Let q̂[k](x, t) be the solution to the optimization problem (4.9), where the superscript344

k indicates that dk was left out of the computation. In the leave-one-out approach, we345

select the regularization parameter Wf = σ−2
f that minimizes the sum of predictive346

errors over all k:347

min
σf

g(σf ) ≡ min
σf

{
1

M

M∑
k=1

wk

(
q̂[k](xk, tk)− dk

)2}
.(4.10)348

Computing g(σf ) involves solving M problems of the form (4.9) and as described in349

[13], we can speed up this computation by using the leave-one-out lemma. In the case350

of weak constraint 4D-Var, note that q̂[k](x, t) optimizes351

(4.11)

min
q

{
wk

(
q(xk, tk)− d̃k

)2
+

∑
m̸=k

wm

(
q(xm, tm)− d̃m

)2
+Wi

∫
Ω

[
q(x, 0)− I(x)

]2
dx352

+Wb

∫ T

0

[
q(0, t)−B(t)

]2
dt+Wf

∫ T

T0

∫
Ω

[
∂q

∂t
+ L[q(x, t)]−Q(x, t)

]2
dx dt

}
353

where354

(4.12) d̃m =

{
q̂[k](xk, tk) m = k

dm m ̸= k
.355

Define q̂m =
[
q̂(x1, t1) q̂(x2, t2) · · · q̂(xM , tM )

]T
then

q̂m = qFm +RP−1(d− qFm) and q̂[k]
m = qFm +RP−1(d̃− qFm).

Consider q̂
[k]
m − q̂m = RP−1(d̃− d) so that356

(4.13) q̂[k](xk, tk)− q̂(xk, tk) = (RP−1d̃)k − (RP−1d)k.357
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12 S. R. BABYALE, J. MEAD, D. CALHOUN AND P. AZIKE

Since d̃m = dm where m ̸= k and358

(4.14) (RP−1d̃)k =

M∑
m=1
m ̸=k

(RP−1)kmdk + (RP−1)kkd̃k,359

we have that360

(4.15) q̂[k](xk, tk)− q̂(xk, tk) = (RP−1)kk(d̃k − dk).361

Now362

d̃k − dk − q̂[k](xk, tk) + q̂(xk, tk)

d̃k − dk
= 1− (RP−1)kk(4.16)363

and since q̂[k](xk, tk) = d̃k, we have364

q̂(xk, tk)− dk
q̂[k](xk, tk)− dk

= 1− (RP−1)kk.(4.17)365

This means we do not have to solve the data assimilation problem k times because366

q̂[k](xk, tk)− dk =
q̂(xk, tk)− dk
1− (RP−1)kk

.(4.18)367

Substituting for q̂[k](xk, tk)−dk in (4.10), we find the optimal Wf = σ2
f by minimizing368

g(σf ) =
1

M

M∑
k=1

wk

(
q̂(xk, tk)− dk
1− (RP−1)kk

)2

.(4.19)369

Simplifying further, we replace (RP−1)kk with it’s average value and we minimize370

g(σf ) = M
(q̂m − d)TWd(q̂m − d)

Tr(I−RP−1)2
(4.20)371

=
MJdata[q̂]

Tr(I−RP−1)2
.(4.21)372

Applying Lemma 3.1, the result follows.373

Figure 2(a) demonstrates the role of the GCV method in identifying the optimal374

model error variance, σ2
f . The GCV method evaluates how well the model and obser-375

vational data are balanced, minimizing prediction error by systematically adjusting376

σ2
f . As seen in Figure 2(a), the GCV function g(σf ) is plotted against σf , with a377

clear minimum indicated by the black dot. This minimum represents the optimal378

value of σf , ensuring that the regularization is neither too strong nor too weak, re-379

sulting in a solution that effectively balances the data fit and the regularization of380

model dynamics.381
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(a) GCV curve (b) χ2 curve

Fig. 2: Illustrative examples of model error variance estimates for 4D-Var with rep-
resenters using (a) GCV where g(σf ) is given by (4.1) and (b) χ2 method.

4.2.3. χ2 method. The χ2 method uses a statistical test to select the regu-382

larization parameter based on the assumption that the minimized objective function383

should approximate a chi-square distribution with M degrees of freedom, where M is384

the number of observations. Rather than check if the residual passes the χ2 test after385

the regularization parameter is chosen, the test is used to solve for the regularization386

parameter. For ill-posed inverse problem Ax = d, it is shown in [23] that387

(4.22) J ≡ (Ax̂− d)TWd(Ax̂− d) + (x̂− x0)
TWf (x̂− x0) ∼ χ2

M ,388

for large enough M , even if the data errors are not normally distributed. In standard389

Tikhonov regularization, the regularization parameter is chosen so that390

(4.23) J [λ] ≈ M.391

An efficient algorithm for the χ2 method was developed in [24]. For weak constraint392

4D-Var data assimilation with representers, Wf = σ−2
f is chosen such that the cost393

function J [q̂] in Theorem 3.3 also follows a χ2 random variable with M degrees of394

freedom [4], i.e.395

(4.24) J [q̂] = hTP−1h ∼ χ2
M .396

It was shown in [24] that for a convergent optimization algorithm, the minimized397

cost function is monotonically decreasing as a function of σf . Figure 2 (b) gives398

an illustrative example. Note that the optimal regularization parameter does not399
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14 S. R. BABYALE, J. MEAD, D. CALHOUN AND P. AZIKE

minimize J [q̂] due to the errors in the dynamics and data. The optimal value of the400

minimized cost function is the number of data, M = 49. Unlike previous approaches401

such as in [5], where the model error covariance is first specified and then tested to402

see if it passes the χ2, in this case, we select the model error variance that passes the403

χ2 test and use it to weight the model dynamics during the data assimilation process.404

5. Numerical Experiments. The numerical experiments estimate q(x, t), rep-405

resenting wildfire smoke PM2.5 concentration, using a one-dimensional transport equa-406

tion with simulated observational data. The goal is to find model error estimates that407

properly weigh the model given the data error weight. We use the regularization408

parameter selection methods described in section 4 to find the optimal values of the409

model error weight Wf = σf
2, which are then integrated into the data assimilation410

algorithm.411

5.1. Model and data setup.412

5.1.1. Transport model. The PM2.5 concentration q(x, t) is modeled by a 1D413

transport equation with an exponential source term Q(x, t) representing wildfire emis-414

sions:415

(5.1)


∂q
∂t + u ∂q

∂x = Q(x, t) for x ∈ [30, 45], t ∈ [0, 20]

q(x, 0) = 0

q(0, t) = B(t)

416

where u is a constant wind field. Since the main focus of this paper is estimating417

the error variance of the model dynamics, we assume that the initial and boundary418

conditions are exact. The source term Q(x, t) is designed to model the emission of419

PM2.5 from wildfire sources and is defined as the sum of two Gaussian functions. Each420

function represents a distinct wildfire source, characterized by its emission strength,421

spatial and temporal decay rates, and the location. Specifically, the source term is422

given by:423

(5.2) Q(x, t) = S0 exp(−α0(x− x0)
2 − k0t) + S1 exp(−α1(x− x1)

2 − k1t)424

Here S0 and S1 denote the initial emission strengths of the two sources, while α0,425

α1 are the spatial decay rates, controlling the rate at which the PM2.5 concentration426

diminishes with distance from the source locations x0 = 33 and x1 = 40. The parame-427

ters k0 and k1 represent the temporal decay rates, dictating how the emission intensity428

decreases over time. This formulation allows the model to capture the temporal and429

spatial dynamics of PM2.5 dispersion resulting from multiple wildfire sources.430

5.1.2. Upwind finite volume method. We solve the transport model using431

the upwind finite volume method. To solve the transport equation (5.1) using this432

method, the domain is divided into a series of control volumes or cells. Let xi represent433

the center of the i-th cell width ∆x and qi(t) represent the average value of q(x, t)434

over this cell [19]. The finite volume method integrates the transport equation over435

each cell
[
xi+ 1

2
, xi− 1

2

]
:436

(5.3)
d

dt

∫ x
i+1

2

x
i− 1

2

q(x, t)dx+

∫ x
i+1

2

x
i− 1

2

u
dq

dx
dx =

∫ x
i+1

2

x
i− 1

2

Q(x, t)dx.437

The first term, which represents the time derivative, can be approximated as:438

(5.4)
d

dt

(
qi(t)∆x

)
= ∆x

dqi(t)

dt
.439
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By applying Gauss’s theorem, the advection term u dq
dx , is given as440

(5.5)

∫ x
i+1

2

x
i− 1

2

u
dq

dx
dx = u

(
q(xi+ 1

2
, t)− q(xi− 1

2
, t)

)
.441

This scheme accounts for the direction of the wind field u which is key for solving442

the forward (2.8) and backward (2.9) systems that result from using the method of443

representers. If the wind field u > 0, the advection term at the interface xi+ 1
2
is444

influenced by the upstream value (left side of the interface). Conversely, if u < 0 , it445

is influenced by the downstream value (right side of the interface). Thus, the flux at446

the interface xi+ 1
2
can be written as:447

(5.6) Fi+ 1
2
=

{
uqi, if u > 0

uqi+1, if u < 0.
448

Substituting this into the integral form of the transport equation (5.3) and dividing449

by ∆x, the discrete form becomes:450

(5.7)
dqi(t)

dt
= − 1

∆x

(
Fi+ 1

2
− Fi− 1

2
+Qi

)
, s451

where Qi is the discretized source term over the control volume. ∆t is chosen so that452

the Courant-Friedrichs-Lewy (CFL) condition is satisified.453

5.1.3. Observations. Simulated observations dm are generated at space-time454

locations (xm,tm) by adding white noise to the true state found by solving (5.1)455

(5.8) dm = q(xm, tm) + ϵm ϵm ∼ N (0, σ2
m).456

The simulated observational data noise varies in space and time, with its variance457

σ2
m proportional to the true concentration, i.e., σm = σq(xm, tm). This ensures that458

regions with higher PM2.5 levels exhibit greater variability and captures the inherent459

uncertainty and measurement errors typical of environmental monitoring systems.460

The space and time locations of the observations are chosen randomly to from a461

uniform distribution over the domain [30, 45] and time period [0, 20].462

5.1.4. First guess. The first guess qF (x, t) for the PM2.5 concentration is ob-463

tained by solving the transport equation using perturbed parameter values in the464

source term. These perturbations are applied to the spatial decay rates, and tem-465

poral decay rates of the wildfire sources, introducing discrepancies between the first466

guess and the true solution. Specifically, the source term for the first guess is defined467

with slightly different parameters αF 0, αF 1, kF 0 and kF 1 compared to the true values468

with αF i ∼ N (αi, σ
2
αi
) and kF i ∼ N (ki, σ

2
ki
) for i = 0, 1. i.e.469

(5.9) QF (x, t) = S0 exp(−αF 0(x− x0)
2 − kF 0t) + S1 exp(−αF 1(x− x1)

2 − kF 1t).470

The first guess serves as a baseline from which the data assimilation process begins,471

highlighting the need for adjustments based on observational data to achieve more472

accurate state estimates.473
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5.2. Experiment setup. The experimental setup is designed to evaluate the474

performance of model error estimation in weak constraint 4D-Var data assimilation475

under different data noise levels and errors in the dynamical model. The experiments476

are classified into two categories based on whether the simulated observational data477

or first guess is trusted more. In the first category, experiments 1 and 2 in Table 1,478

the first guesses are more accurate, representing situations where the model is more479

trusted than the data. In the second category, experiments 3 and 4 in Table 1, the480

simulated observational data is closer to the true PM2.5 solution reflecting scenarios481

where the data are more reliable than the model.482

Exper. BC S1 k1 α1 σ σk0
σk1

σα0 σα1

1 periodic 0 0 0 0.7 0.2 0 0.2 0
2 no flux 50 0.25 5 0.6 0.2 0.2 0.2 0.2
3 periodic 0 0 0 0.3 0.5 0 0.7 0
4 no flux 50 0.25 5 0.2 0.6 0.5 0.5 0.5

Table 1: Parameters and their corresponding standard deviations used in numerical
experiments 1-4.

Table 1 shows the parameter values used in the experiments, including boundary483

conditions(BC), source emission strength, decay constants, noise levels, and pertur-484

bation magnitudes for the first guess. The parameters for the first source of PM2.5485

emissions in (5.2) are held constant across all experiments with S0 = 100, k0 = 0.5,486

and α0 = 10. Perturbations are applied to the parameters k0, k1, α0, and α1 in the487

first guess to introduce discrepancies between the model and the true solution, with488

σk0 and σα0 corresponding to the perturbations in the temporal and spatial decay489

rates of the first source, and σk1 and σα1 corresponding to the second source. σ490

represents the noise level applied to the observational data.491

5.3. Model error estimation. In section 4 we presented three methods for492

estimating the transport model error variance, σ2
f . This parameter balances the in-493

fluence of the model dynamics and the observational data in the assimilation process.494

Figure 3 illustrates the L-curves, GCV curves, and χ2 method curves for each exper-495

iment, showing the process of estimating the model error standard deviation. Each496

column of subplots corresponds to one of the regularization methods and highlights497

the specific value that corresponds to estimated σf
2. Each row corresponds to an ex-498

periment with experiment 1 at the top and 4 at the bottom. The black dot indicates499

where σ2
f was chosen for each method. The corresponding values for σ2

f are given in500

Table 2.501

For the L-curve method, the values of σf
2 at the corner of the L-curve are not502

necessarily the points of maximum curvature. As discussed in [15], the L-curve crite-503

rion only pinpoints the optimal regularization parameter at the curve’s corner when504

the regularization norm increases immediately as σ2
f becomes smaller than the opti-505

mal variance σf
2 which isn’t the case for our experiments. The values obtained at506

the point of maximum curvature provided better optimal estimates across all exper-507

iments, and these are the values shown on the L-curves in Figure 3 and listed under508

the L-curve row in Table 2.509
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(a) L-curve (b) GCV curve (c) χ2 curve

Fig. 3: Model error standard deviations selected by regularization parameter selection
methods. Each row represents an experiment with experiment 1 at the top and 4 at
the bottom. The first column is L-curve, second is generalized cross validation and
the third is χ2 method.
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Experiment 1 2 3 4

L-curve 0.6163 0.4546 0.9863 1.0424
GCV 0.6526 0.00237 6.9549 1.5107
χ2 0.6764 9.7616e−5 2.2348 1.6697

Table 2: σf
2 estimates from the three regularization parameter selection methods.

Table 2 gives the model error variances estimated by each regularization param-510

eter selection method for each experiment. In experiments 1 and 2, the first guess is511

closer to the true solution than the observational data and in experiments 3 and 4 the512

observational data is more accurate than the first guess. In experiment 1, the values513

for σf
2 are relatively similar across all regularization parameter selection methods514

methods. In experiment 2, the σf
2 values vary significantly. The χ2 method yields515

the smallest variance while the the L-curve method gives the highest variance. This516

difference reflects a decreased reliance on the model dynamics in favor of data cor-517

rection with the L-curve method and more trust in the model dynamics with the χ2518

method. For experiment 3, the estimated model error variances differ considerably,519

with the L-curve method producing the lowest value and and the GCV method the520

highest. This suggests that the L-curve method gives more weight to the model than521

other methods, while the GCV method strongly favors the observational data. In522

experiment 4, the values for σ2
f are similar, but the L-curve method still provides the523

smallest variance followed by the GCV and χ2 methods. There is a minimal difference524

between the GCV and χ2 methods which implies a slightly greater alignment between525

them in weighting the model dynamics.526

Across all regularization parameter selection methods, the σ2
f estimates from ex-527

periments 1 and 2 are generally lower than those from experiments 3 and 4. This528

suggests that when the model is more accurate (experiments 1 and 2), the regulariza-529

tion parameter selection methods assign lower σ2
f values, thereby correctly identifying530

that we should rely more on model dynamics. In contrast, when the observational531

data is more reliable (experiments 3 and 4), the higher σ2
f values correctly indicate we532

should rely more heavily on the data. However, when σ2
f becomes too large, particu-533

larly with the GCV method in experiment 3, there is a problem with over-reliance on534

data. There are 49 data and 89000 state estimates, so the problem is very under de-535

termined. If σ2
f is too large, the problem is ill-posed and we will see in subsection 5.4536

that this results in unrealistic oscillations in the state estimates.537

5.4. Optimal PM2.5 estimates. After obtaining σ2
f in Table 2 for each ex-538

periment using the three regularization parameter selection methods, we use those539

model error variances to do data assimilation in order to obtain PM2.5 concentration540

estimates as shown in the results below.541

5.4.1. Experiment 1. This experiment was set up with the first guess closely542

approximating the true PM2.5 concentration, more so than the simulated observa-543

tional data. Figure 4 shows the spatial PM2.5 concentrations at four distinct times544

during the transport process. In this experiment, there is only one source at x = 33545

and periodic boundary conditions were used. We note that the assimilated estimates546

from the three regularization parameter selection methods behave similar across space547

and time.548

At t = 0.13, the assimilated state estimates, first guess, and true concentration549

values are closely aligned across all spatial locations. The assimilated estimates fit550
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the first and last data points, which are in agreement with the first guess at their551

respective locations. This suggests that, early in the transport process, the assimilated552

estimates follow the first guess almost exactly, showing no significant deviation from553

it. At t = 9.03, the first data point still aligns well with the first guess and the554

true concentration. However, the assimilated estimates do not fit the first data point555

because with global optimization, they attempt to match the second data point. At556

this point in time the impulse has moved to the right and increased. The assimilated557

estimates correctly follow the first guess rather than fit the data. At t = 14.97, the558

assimilated estimates continue to match the first guess between x = 30 and x = 34,559

then try to fit the data. However, the assimilated estimates fail to fit these data points560

and more heavily rely on the first guess. At t = 17.93, we continue to see that the561

assimilated estimates make an attempt to fit the data but generally rely on the first562

guess, ultimately giving good estimates of the solution.563

Fig. 4: PM2.5 concentration as a function of space for experiment 1

5.4.2. Experiment 2. This experiment was set up similarly to experiment 1,564

but the key difference in this experiment is that it has two sources of PM2.5 located565

at x = 33 and x = 40, and no flux boundary conditions were used. Figure 5 presents566

the spatial PM2.5 concentration at four different times during the transport process.567

Again, we see that the assimilated estimates using the three regularization parameter568

selection methods behave similarly across space and time.569
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At t = 0.09, the assimilated state estimates, observational data, first guess, and570

true concentration values all align closely across the spatial domain. This close align-571

ment early in the simulation indicates that the model, first guess, and data are in572

agreement at this stage, with minimal deviation among them. At t = 5.93, as the573

concentration evolves across space, discrepancies become more noticeable between the574

first guess and the true concentration, we note that estimates from all methods follow575

the first guess throughout this spatial evolution even though it is not necessarily closer576

to the solution than the data. At t = 8.85, the differences between the first guess and577

the true concentration become more pronounced as the concentration continues to578

evolve across space. Even though the data has more noise than the first guess due to579

the randomness in our experiments the data is closer to the true values. The estimates580

from all methods continue to follow the first guess and only fit the data points that581

align with the first guess, particularly in the earlier spatial regions. At t = 11.78,582

the L-curve estimates display a clear effort to better fit the third, fourth and fifth583

data points, showing a significant deviation from the first guess. This deviation is an584

indication of the L-curve choice of larger variance in the model. Estimates from the585

GCV and χ2 methods, on the other hand remain closely aligned with the first guess,586

fitting only the observed data that align with the first guess.587

Fig. 5: PM2.5 concentration estimates a function of space for experiment 2
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5.4.3. Experiment 3. This experiment was designed with the simulated obser-588

vational data closer to the true PM2.5 concentration than the first guess. Figure 6589

shows PM2.5 concentration as a function of time at four different spatial locations,590

namely x = 32.55, 34.88, 37.20, 41.85. These locations were strategically chosen to591

capture critical moments in the transport process, focusing on positions before and592

after the source of the pollutant. Similar to experiment 1 there is one source and593

periodic boundary conditions were used.594

At x = 32.55, the assimilated estimates attempt to fit the data points. Between595

t = 5 and t = 15 the estimates tend to oscillate most likely due to ill-posedness in596

the underdetermined problem. After the data point at t = 17.9, the estimates from597

each method become more distinct. The GCV estimates demonstrate a better overall598

fit to the data throughout the time series, aligning more precisely with the observed599

values compared to the L-curve and χ2 methods. At x = 34.88, the assimilated600

estimates try to fit the data but at the impulse at t = 2.5, they more closely align601

with the first guess. After this point, the estimates from different methods slightly602

differ. The estimates from the GCV method fit the data points more closely. All three603

assimilated estimates deviate significantly from the first guess in an attempt to fit the604

data. At x = 37.20 and x = 41.85, all three assimilated estimates attempt to fit the605

data, showing a stronger preference to the observational data than the first guess.606

The GCV estimates fit the data points more closely than other methods reflecting the607

larger value of σ2
f that was chosen with this method.608

Fig. 6: PM2.5 concentration estimates a function of time for experiment 3
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5.4.4. Experiment 4. This experiment was set up similarly to experiment 3,609

but the key difference in this experiment is that it has two sources of PM2.5 located at610

x = 33 and x = 40 and no flux boundary conditions were used. Figure 7 presents the611

temporal evolution of PM2.5 concentration estimates at four different spatial locations:612

x = 32.55, 37.20, 39.52, 41.85.613

At x = 32.55, a location on the left side of both emission sources, the PM2.5614

concentration is close to zero due to the constant wind field used, blowing the pollutant615

to the right and the assimilated estimates oscillate as they fit the data. This oscillation616

can be attributed to the ill-posed nature of the underdetermined problem. At x =617

37.2 and x = 39.52, the assimilated estimates show a clear attempt to fit the data618

points but they also follow the first guess while making necessary adjustments to619

accommodate the observed data. This balance between following the first guess and620

adapting to the data points illustrates the estimates’ capacity to capture the key621

features of the transport process at these locations. At x = 41.85, the assimilated622

estimates manage to largely follow the first guess while making necessary adjustments623

to accommodate the observed data at most times except for the attempt to fit data624

near t = 7.5. This balance between following the first guess and adapting to the data625

points illustrates the estimates’ capacity to capture the key features of the transport626

process at this location.627

Fig. 7: PM2.5 concentration estimates a function of space for experiment 4

Table 3 presents the root mean square errors (RMSEs) of the three PM2.5 con-628

centration estimates and the true concentrations. In experiment 1, the RMSE of the629
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Experiment 1 2 3 4

First guess 1.5319 2.1465 6.5241 5.8753
Data 5.7629 6.6861 3.5120 2.4087

L-curve 1.8219 2.1548 3.8177 4.1629
GCV 1.8400 2.1426 2.9801 4.0341
χ2 1.8516 2.1459 3.2786 4.0005

Table 3: RMSEs between the various PM2.5 estimates and the true concentration

first guess is 1.5319, while the RMSE of the data is much higher at 5.7629 through630

these scalar values we see how the first guess is closer to the true solution than the631

data. The RMSEs of the assimilated estimates using the parameter selection methods632

are similar to each other and slightly higher than the RMSE of the first guess. From633

these values, we conclude that the automated choices of σ2
f correctly identified the634

magnitude of accuracy of the model dynamics. For experiment 2, the RMSEs of the635

first guess and the assimilated estimates are similar indicating that the data did not636

mislead the estimates and the automated choice of σ2
f accurately reflects the model637

error. In experiment 3, the first guess has a higher RMSE of 6.5241, while the data638

RMSE is lower at 3.5120. The GCV method achieves the best RMSE, followed by the639

χ2 method and the L-curve method. Since the RMSE of the assimilated estimates is640

near the RMSE of the more accurate data, we again see that the automated choice of641

larger σ2
f correctly reflects the larger model error.642

In experiment 4, the first guess has a RMSE of 5.8753, while the data RMSE643

is lower at 2.4087. The RMSEs for all the three assimilated estimates are greater644

than that for the data but less than that for the first guess. This may indicate that645

the assimilated estimates are worse than the data. However, the data are sparse and646

the model dynamics give concentration estimates where there are no data. Since the647

RMSEs for the assimilated estimates are smaller than the RMSE for the first guess,648

we did find a reasonable compromise between data and model estimates with the649

automatic σ2
f .650

In all attempts, assimilated estimates using σ2
f found by the regularizition pa-651

rameter selection methods i.e. the GCV, L-curve, and χ2 methods have lower RMSE652

values compared to the largest first guess or the data RMSE.653

6. Conclusion. In this work, we formulated weak constraint 4D-Var as a reg-654

ularization inverse problem, with the model error variance as the regularization pa-655

rameter. The main focus of our study was on applying three regularization parameter656

selection methods namely, the L-curve, GCV, and χ2 methods to estimate the model657

error variance. A key aspect of our approach was the application of the representer658

method, which leverages the finite-dimensional nature of the observation space to ex-659

press optimal state estimates as a linear combination of representers. This method660

reduces the solution search space from the state space to the data space, providing661

an efficient implementation for 4D-Var and enabling us to express the assimilated662

estimates analytically. Additionally, the representer method facilitated the663

derivation of matrix expressions for each regularization parameter selec-664

tion method, such as Jdata[q̂] in Lemma 3.1, Jmod[q̂] in Lemma 3.2 for the665

L-curve, Lemma 3.1 for the GCV, and J [q̂] in Theorem 3.3 for the χ2666

method.667

We conducted numerical experiments using the transport equation to estimate668
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PM2.5 concentrations with simulated observational data. The results illustrated the669

importance of accounting for model imperfections in data assimilation. Across the four670

experiments, the three regularization parameter selection methods yielded consistent671

model error variance estimates. These estimates accurately captured the balance672

between the influence of observational data and model predictions on assimilated673

state estimates. This balance is crucial for accurate PM2.5 estimation in complex674

wildfire smoke transport scenarios, where, in addition to unknown uncertainties in675

the forcing, there are also unknown model physics.676

In situations where observational data was significantly more reliable than the677

model, our results showed that the assimilated estimates closely fit the data. However,678

as demonstrated in experiments 1 and 4, the problem is often severely underdeter-679

mined due to insufficient data, a common challenge in state estimation problems. In680

such instances, artificially decreasing σ2
f can help create a well-posed problem. Alter-681

natively, a large value of σ2
f may indicate that further model improvement is necessary682

before using it for data assimilation.683
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