
MATH 365
Linear Regression Lab

1 Introduction

Linear regression is a way to understand the linear relationship between two or more variables.
This relationship can be written as a mathematical formula and used to

• describe the linear dependence of one variable on another.

• predict values of one variable from values of another.

• correct for the linear dependence of one variable on another, in order to clarify other features
of its variability.

The correlation coefficient, on the other hand, measures the strength of a linear relationship
between variables. This is different from regression which focuses on the mathematical form of the
relationship.

2 Simple Linear Least Squares Regression

In simple linear regression the mathematical problem is as follows:

Given a set of k points (xi, yi) i = 1, 2, ..., k

assume they are related through the equation

yi ≈ b0 + b1xi

where b0 and b1 are constant (unknown) coefficients. Most data (xi, yi) contain noise and it is not
possible for every data point to satisfy this linear relationship. Therefore we seek to find b0 and b1
so that

yi = b0 + b1xi + ni

where ni represents the noise in each data point.

For least squares regression we assume the noise ni follows a Gaussian or normal distribution.
Our goal is to find coefficients b0 and b1 and form the best fit, or regression line

ŷ(x) = b0 + b1x. (1)

If the noise has zero-mean we find b0 and b1 by minimizing S, the sum of squared errors:

S =
k∑

i=1

(yi − ŷi)2.
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We can use multivariable calculus to find the values of b0 and b1 that minimize S but we will
not go through the derivations here. If we let µx denote the mean of x and µy the mean of y, then
the coefficients b0 and b1 can be written in the convenient form

b0 = µy − b1µx

b1 =

∑k
i=1(xi − µx)(yi − µy)∑k

i=1(xi − µx)2
.

The predicted value of y at any point x is given by ŷ(x) in (1). At the data points xi, ŷ(xi)
will most likely not equal the observed value yi. The residual ei = yi − ŷ(xi) measures how far the
prediction is from the observations. The variance in the residual is

σ̂2 =

∑k
i=1 e

2
i

k − 2
. (2)

The k−2 in the denominator is known as the “degrees of freedom”, and is computed by subtracting
the number of parameters estimated (b0 and b1) from the number of observations.

3 Correlation Coefficient

The coefficient of determination r2 is a measure of how well the regression line represents the
data. It is defined as:

r2 = 1−
∑k

i=1 e
2
i∑k

i=1(yi − µy)2.
(3)

In simple linear regression, the correlation coefficient r is simply the square root of the coefficient
of determination. One advantage of r is that it is unitless, allowing researchers to make sense of
correlation coefficients calculated on different data sets with different units.

As an example consider r = 0.9, i.e. r2 = 0.81. This means that 81% of the total variation in y
can be explained by the linear relationship between x and y. The other 19% of the total variation
in y remains unexplained.

4 Multivariate Linear Least Squares Regression

Simple linear regression is limited because we can only consider two variables of interest. For
example, a child’s height (y) may depend on both their mother’s (x1) and father’s (x2) height. In
simple linear regression we only have the following two equations to work with

ŷ(x1) = b10 + b11x1 and ŷ(x2) = b20 + b21x2

where b10, b11 are the constants for simple regression with their mother’s height b20, b21 and are the
constants for the father’s. The problem with two separate regression lines is that neither captures
how y depends on x1 and x2 simultaneously. In fact, by not including all confounding factors in
the simple linear regression equations we create bias in our estimate of the child’s height.

Multivariate regression is a step towards remedying this by adding variables to the simple
linear regression case, i.e.

ŷ(x1, x2) = b0 + b1x1 + b2x2.
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A good way to think about regression is that we’re finding weights (b1, b2) that determine the
importance of each of the variables (x1, x2). To visualize this relationship, we need to think in
three dimensions. Before, with simple regression, we could plot the relationship on a 2D graph.
Now the data points are in a 3D space of child’s height, mother’s height, and father’s height. Here’s
a picture of a 3D scatterplot.

Note that this graph does not represent the height data we have been talking about, i.e. x1 ∈
[−20, 120], x2 ∈ [0, 100] and y ∈ [−50, 250].

When we run a regression in this space, we find a regression plane, not a regression line. This
plane in 3D space has two different slopes: the amount it increases when you increase the x1 variable
and the amount when you increase x2. The variables b1 and b2 describe the two slopes but there is
only one intercept b0 which is the value of the plane where it touches the vertical y-axis. Here is a
picture of a different 3D scatterplot with a 2D regression plane.

Visualizing multvariate regression helps our understanding of the process. However, we will not
focus on this aspect as it needs more attention than we have time and can be found in a course
focused on visualization.

In order to find equations for the multivariate coefficients b0, b1 and b2 we use the matrix form
of regression. If we have two independent variables (e.g. mother’s and father’s height) the data are
(xi1, xi2, yi) i = 1, . . . , k. Each data point satisfies

yi = b0 + b1xi1 + b2xi2 + ni.
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All the data can be written simultaneously with the the matrix equation
y1
y2
...
yk

 =


1 x11 x12
1 x21 x22
...

...
...

1 xk1 xk2


 b0
b1
b2

 +


n1
n2
...
nk

 .
We can write this matrix equation more simply as

y = Xb + n. (4)

The least squares strategy for finding b is the same as in the simple linear regression model,
but in multi-dimensions. We minimize S, the sum of squared errors

S =

k∑
i=1

(yi − ŷi(x1, x2))2 =

k∑
i=1

(y −Xb)2i .

We again use multivariable calculus to find the values in b that minimize S but we will not go
through the derivations here. The coefficients can be written in the convenient form

b = (XTX)−1XTy. (5)

The variance in the residual σ̂2 and the correlation coefficient r are calculated in the same
manner as for simple linear regression in (2) and (3), respectively. The R2 value in multivariate
linear regression is often called the coefficient of multiple determination.

5 Matrices in Python

Multivariate regression requires us to create matrices and solve systems of equations. Vectors such
as v ∈ Rk can be thought of as a special case of a matrix like A ∈ Rk×p. With that thought in
mind creating a matrix in Python is very similar to creating a vector. Recall to create the vector
we type

v=np.array([1,2,3])

This is a row vector [1, 2, 3], i.e. v ∈ R1×3. Instead, let’s create it as a column vector

 1
2
3

 ∈ R3×1

v col = np.array([[1],
[2],
[3]])

In Python v has shape (3,) while v col has shape (3, 1).

Viewing the difference between row and column vectors helps us see how a vector is a special

case of a matrix. For example the matrix A =

 1 2 3
3 4 5
6 7 8

 ∈ R3×3 is created in Python by
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A = np.array([[1,2,3],
[3,4,5],
[6,7,8]])

Matrix indexing is similar to vector indexing. For example, A23 = 5 and this is accessed in
Python with A[1,2]. (Recall that Python indexing starts as 0). If we want to access the last two
columns of the first two rows

print(A[:2, 1:3])

returns

[ [2 3]
[4 5]]

Matrix algebra such as addition, subtraction and multiplication requires that the dimension of
the matrix and vectors “agree”. For addition and subtraction, the objects must have the same
dimension. In Python we can simply type v+v or A+A.
WARNING: If we type v+v col this should give us an error but instead we get

[[2,3,4],
[3,4,5],
[4,5,6]])

I suggest thinking about how Python is interpreting this algebra.

Matrix multiplication such as Avcol requires that the number of columns in A equal the number
of rows in vcol. The process of matrix multiplication involves multiplying each row by each column.
If you haven’t done this in awhile, I recommend reviewing it. Matrix multiplication in Python is
done with the np.dot() command, e.g.

print(np.dot(A,v col))

produces the correct answer

[[14]
[26]
[44]]

WARNING: If we type print(np.dot(A,v)) this should give us an error (why?) but instead we get

[14 26 44]

Fortunately, if we type print(np.dot(v col,A)) we will get an error message while if we type print(np.dot(v,A))
we get the correct answer (what is it?). While Python has advanced capabilities for data analysis,
unfortunately it falls short with matrix algebra.

Our focus here is to solve the linear system Xb = y for the multivariate regression coefficients.
More advanced courses in computational math focus on algorithms to solve linear systems, while
in this introductory course we will just the existing library np.linalg.solve().

For example solve Avcol = y for vcol. First we form y, then use np.linalg.solve to estimate vcol:
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y =np.array( [[14],
[26],
[44]])

v col est = np.linalg.solve(A,y)

print(v col est) gives us the estimate

[[2.]
[0.]
[4.]]

Interesting! The correct answer is vcol =

 1
2
3

 and the estimate v col est is very different. The

issue is not that Python is doing something fishy with our matrices and vectors. Rather, the issue
is the mathematical solution of Avcol = y has issues. We’ll talk more about this later.

Let’s say we don’t know know the correct answer is vcol. How can we check if our answer is
correct? Naively, we could take our estimate v col est, multiply it by A and see if we get y

print(np.dot(A,v col est))

The result is

[[14]
[26]
[44]]

Interesting! The matrix multiplication gave us the correct y even though our estimate v col est
was incorrect. More on this later.

6 Individual Lab

Simple Linear Regression
These questions should be completed in Blackboard before class. For the data (0,0), (-1,1) and
(4,-1) answer the following questions in Blackboard

1. Find the regression coefficients b0 and b1.

2. Find the predicted value of y at x = 2.

3. Find the residual e2 = y2 − ŷ(x2).

4. Find the variance in the residuals.

5. Find the correlation coefficient between between x and y.

Multivariate Linear Regression
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1. Consider the multivariate data (x1, x2, y): (−2, 4, 1), (−2, 1, 0), (0, 0, 2), (1, 1, 3) and assume
we fit it to the line ŷ(x1, x2) = b0 + b1x1 + b2x2.

(a) Identify the matrix X in (4).

(b) Identify the vector y in (4).

(c) Identify the formula for the coefficients b =

 b0
b1
b2

 in (5).

(d) The estimates of the coefficients are b0 = 1.83, b1 = 1, b2 = 0.28. How would you
interpret these values?

2. If X =


1 −2 4
1 −2 1
1 0 0
1 1 1

 then the following values of b and y satisfy Xb = y.

7 Group Work

Simple Linear Regression

Please write your answers to the following questions on the supplied note cards.

1. Given the data (0,0), (-1,1) and (4,-1) write the commands that create Numpy arrays x and
y containing the x and y coordinates, respectively.

2. Given only a Numpy array x, write a function that computes the mean of the elements in x.
Please complete the remaining questions in groups of 2-3 people.

3. Using only pen and paper, create a function regcoef(x,y) that returns the linear regression
coefficients b0 and b1. Use these tips and be prepared to explain to the rest of the class why
one should follow them.

(a) First write a function to compute the mean and call it within regcoef

(b) Form b1 before b0.

(c) Form the numerator and denominator in b1 separately

(d) Call the function that computes the mean first.

4. Code your functions from 3 in Python and test them by finding the linear regression coeffi-
cients for the data (0,0), (-1,1) and (4,-1). Use the answer you found in the homework due
today to check that your function is working correctly. Be prepared to discuss with the class
the errors you encountered and your debugging strategies.

5. Define two anonymous functions: one to compute ŷ and a second to compute residuals ei.
Define the functions so that you can form the residual vector e with one line. Be prepared to
discuss the function inputs and how you would access each element ei.
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6. Write a regular function that computes the variance in the residual and use your anonymous
functions from 5. Check that your function works by testing it with data (0,0), (-1,1) and
(4,-1) for which you know the correct answer. Be prepared to discuss with the class the errors
you encountered and your debugging strategies.

7. Write a regular function that computes the correlation coefficient. Again check your answer
with data (0,0), (-1,1) and (4,-1) for which you know the correct answer. In addition, plot
the data and the regression line on the same graph. Be prepared to discuss with the class
how well the line predicts points other than the data.

Multiple Linear Regression
An important characteristic of a semiconductor product is the pull strength of a wire bond. We
will investigate the suitability of using a linear multiple regression model to predict pull strength y
as a function of wire length x1 and die height x2.

1. Load the data in wire.txt and form one dimensional arrays y, x1 and x2. Here are some tips

(a) Refer to the Working with data files Lab to remind yourself how to read and work with
a data file.

(b) Identify the shape of the array you created when loading the data. All the data will be
loaded into one column. Separate it into the correct number of rows and columns by
following the instructions on the bottom of page 2 and top of page 3 in the Working
with data files Lab.

Be prepared to discuss the shape of the arrays y, x1 and x2 and how they relate to our formula
for the regression coefficients b in equation (5).

2. Form the regression matrix X in (4). Note that it has 3 columns and here are some tips

(a) You can transpose a matrix A by executing A.transpose()

(b) You can create an array of 1s using np.ones.

(c) You can stack 1-D arrays as columns using np.column stack

Be prepared to discuss challenges in getting the dimension of X correct.

3. The formula for b in (5) involves finding the inverse of the matrix XTX. Don’t use that
formula, rather find b by solving the system XTXb = XTy because that is a more accurate
and efficient approach on a computer.

(a) Use matrix algebra to explain why forming b as described in (5) is the same as solving
the system XTXb = XTy for b.

(b) Form the matrix A = XTX and the vector rhs = XTy and use np.linalg.solve to solve
Ab = rhs.

Be prepared to report the dimension of A and rhs and your values for the coefficients bi, i =
1, . . . 3.
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