Contents

(1 Following Instructions|

1.3 Group work|

2 Loops and Conditional Statements|

2.3 Group work|

[3 Python and Jupyter Notebooks|

[3.1.1 Jupyter Notebooks|

[3.1.2 Python Syntax]

B.1.3 NumPy|
3.1.4 Plotting] e

3.3 Group work| e

4_Functions|

4.1.1 Anonymous Functions| oo

4.1.2 Functions in Python| o oo

12
12
12
13
14
15
15
17

4.3 Group workl|

[5> Working with data files|

p.1.1 Reading and writing with Numpy|.

p.1.2 Formatting]

5.3 Group workl|

[6 Linear Regression|

7 MATLAB

[7.1.1 Working with data in MATLAB|

[7.2 Group workl|

[8 Polynomial Interpolation|

8.1 TIntroductionl.
[8.2 Interpolation with the Vandermonde matrix|
[8.3 Lagrange Interpolation| o
8.4 Runge Phenomenon| o
8.0 Splineg|. L
8.6 Individual Labl o

8.7 Group Work|

[9 Curve Fitting]

26
26
26
27
27
29
29

31
31
31
32
32
34
36
37

40
40
41
42

44
44
44
45
46
48
50
o1

54

9.2 Least squares curve fitting| 54
9.2.1 Quadratic curve] L e e 54
9.2.2 Exponential curve] 56

9.5 Rank and Pseudoinversel oo Lo 57

9.4 Epidemic Modeling| 58
9.4.1 Stochastic Modeling| o o 58
9.4.2 Deterministic Modeling] o oo 59
9.4.3 Continuous time modeling| L0 L. 60
9.4.4 Fitting the model todata] 60

9.5 Individual Lab questions|. o 63

9.6 Group Work|. 64

Chapter 1

Following Instructions

1.1 Introduction

Computers only do what they are told and we must be very literal when programming them. The
ability to read between the lines and determine what was meant rather than what was said is a
skill computers lack.

During class groups will write directions for a visitor who is new to Boise to visit three land-
marks. The directions should be very literal so that a computer, possibly one that may be part of
a driver-less car, can follow them. Each team will swap directions and the goal is to identify the
landmarks.

1.2 Individual Lab

Watch this video on what it takes to give instructions to make a peanut butter and jelly sandwich:
https://youtu.be/euFj8D1A1Kw.

1.3 Group work

Please complete the following questions in groups of 3-4 people. Each team will consist of:

e The manager, responsible for coordinating the work of the team. The manager is the person
who was born the furthest from Boise.

e The spokesperson, who will report your group’s work to the rest of the class. The spokesper-
son is the person commuting longest to class today.

e The scribe, who will be responsible for writing down your team’s findings. The scribe is the
person who’s birthdays is coming up next.

e The timekeeper, who will keep track of time for each exercise. The timekeeper is the person
who was not assigned a role already. In case of a three-person group, the manager takes the
role of a timekeeper.

One person should not have more than one role (except for the manager/timekeeper combo), so
if a person who already was assigned a task meets the criteria for another one, the person who is
next in line (i.e., second-longest commute) takes this role.

1. (10 min) Write directions for a visitor who is new to Boise using the starting point, destination,
and required landmarks in the attached envelope. Each instruction should be simple and start
on a new line, as if you are programming a computer. You may use the provided map of
Boise to help you with planning the route and assume that the visitor has the same map to
guide them. In your directions use the words landmark 1, landmark 2, destination, etc. and
not Capitol Building, Century Link Arena, etc. The scribe will write down the directions on
a separate piece of paper with the team number at the top of the page.

2. (10 min) Swap your directions with another team. Using the other team’s instructions and
your map, try to follow the route from the hotel to the destination point. Identify which
landmarks you pass by, and what is your destination.

Please be literal in following instructions and do not use your knowledge of Boise to identify a
landmark. If a step in the other group’s instructions seems impossible or requires additional
explanation, proceed by attempting to complete the instruction in an obtuse manner.

3. (5 min) Once the answers are posted, identify whether you got the destination and landmarks
correctly. Reflect on the following
e Which part of the exercise did you find to be the easiest?
e How was this activity similar/different to following an algorithm?

e What characteristics of a good algorithm did your directions have (the ones you created
and the ones you followed)?

e What characteristics of a good algorithm did your directions not have that may have
helped?

The spokesperson should be prepared to report your reflections to the rest of the class.

Chapter 2

Loops and Conditional Statements

2.1 Introduction

Every procedural programming language has conditional statements (if-statements) and iterative
statements (loops). You should be familiar with the concepts so here we will only review them in
order to understand how to control order of execution.

2.1.1 Loops

The for loop is a type of flow control statement that allows us to execute a set of commands multiple
times. For example, in the following code fragment the statement Hello World gets executed 10
times, even though it only appears once in the code fragment.

for i = 1:10
print(“Hello, World!”)
end

The for loop has three basic components: (i) the enclosing keywords for and end which enclose
the set of statements to be carried out multiple times by the loop (the statement print(“Hello,
World!”), in the above example), (ii) a loop index which is the variable that stores the current
value of the loop counter (i in the above example), and (iii) an index array containing the range of
values over which the loop index should vary (the array 1:10 in the above example). See below for
the Anatomy of a “for” loop.

Anatomy of a “for” loop

|

, (for =1!!F’N—-f///\
statementl;

Beginning and end of \ _ l
th 5 "for”g; joop f statement2 ; Loop index array

statement3;

B
=

Here’s another example of a for loop

g

for count = 10:-5:1,
print(count)
end

and it will print 10 5.

The while loop is used to repeat a segment of code an unknown number of times until a
specific condition is met. For example, say we want to know how many times a given number can
be divided by 2 before it is less than or equal to 1. If we know a specific number, such as 32, we
can say b times, but for a given symbolic variable NUMBER which represents any number in the
world, how many times is not known a priori (before hand). In this case, we could use a while loop
to determine that answer:

count = 0

while NUMBER > 1
NUMBER = NUMBER /2
count = count + 1

end

WARNING: If the action inside the loop does not modify the variables being tested in the loops
condition, the loop will “run” forever. For example

while y < 10
x=x+1
end

is an infinite loop.

The break statement terminates execution of for or while loops. Statements in the loop
that appear after the break statement are not executed. For example

fruits = [“apple”, “banana”, “cherry”]
for x in fruits

if x == “banana”
break
end
print(x)
end

will print apple. Pretend you are computer to see why this is the result!

The continue statement is used for passing control to the next iteration of a for or while
loop. For example

fruits = [“apple”, “banana”, “cherry”]
for x in fruits
if x == “banana’”
continue
end
print(x)
end

will print apple cherry. Again, pretend you are a computer so that you understand the logic of the
conditional and iterative statements.

2.2 Individual Lab

Please answer the following questions in Blackboard.

1. How many times does the following loop print the statement Three brown bears?
fori = 1:10

print(“Three brown bears”)
end

2. What is printed with the following statements?

fruits = [“apple”, “banana”, “cherry”]
for x in fruits
print(x)
if x == “banana”
break
end
end

3. What will print with the following statements?

for j = 2:3:5
print(j)
end

2.3 Group work

Please complete the following questions in groups of 3-4 people. At the end of class, hand in your
team’s findings with each team member’s name clearly written at the top of the page. Each team
will consist of:

e The manager, responsible for coordinating the work of the team. The manager is the person
who sitting furthest from the door.

e The spokesperson, who will report your group’s work to the rest of the class. The spokesper-
son is the person who ate the healthiest breakfast.

e The scribe, who will be responsible for writing down your team’s findings. The scribe is the
person who is taking the fewest credit hours this semester.

e The timekeeper, who will keep track of time for each exercise. The timekeeper is the person
who was not assigned a role already. In case of a three-person group, the manager takes the
role of a timekeeper.

One person should not have more than one role (except for the manager/timekeeper combo), so
if a person who already was assigned a task meets the criteria for another one, the person who is
next in line (i.e., second-longest commute) takes this role.

1. (5 min)

(a) Consider the pseudocode

x=4
s=0
fori=1:3

S=8s-+X
end

What is the resulting value of s?

(b) Consider the following pseudocode:

X =

S =

fori = 1:n
S=8+X

end

i. If you programmed it, there would be an error message. Why?

ii. Since you cannot successfully program it, write down the sequence of values of s
defined by the for loop. Once you identify a pattern in the sequence, write down a
mathematical expression for s.

The spokesperson should be prepared to report your answers written by the scribe to
the rest of the class.

2. (5 min) Consider the following pseudocode:

x = [0.2 0.15 0.004 0.55 0.77]

findx = 100
fori=1:5
if x(i) < findx
findx = x(i)
end
end

(a) What is the resulting value of findx?

(b) How could you alter this code to find the maximum value in the array (vector) x?

The spokesperson should be prepared to report your answers written by the scribe to the rest
of the class.

3. (1@)min) Consider the following pseudocodes:

yfor =1
fori=1m

yfor = yfor*x (i)
end

i. Identify two reasons why coding this would result in an error message.
ii. Even though we can’t code it, write the sequence defined by the for loop by hand.
Identify the pattern in this sequence and write down the mathematical expression
(b) for théa sequence using [[notation.
s =
fori =1
s =s + x(i)
end
mys = s/n

i. Again we cannot successfully code this, but write the sequence defined by the for
loop by hand and identify the mathematical expression for the sequence using X

notation.
() i Identify what mys represents.
mu =0
fori = 1:n
mu = mu + x(i)
end
mu = mu/n
s=0
fori= 1mn
s =s + (x(i)-mu) "2
end

s = sqrt(s/(n-1))
i. Again we cannot successfully code this, but write the sequence defined by the second

for loop by hand. Identify the mathematical expression for this sequence using 3
notation.

10

ii. Identify what s represents.

The spokesperson should be prepared to report your answers written by the scribe to the rest
of the class.

4. (10 min) This pseudocode is a bit more challenging.

forj=1mn
s=1
fori=1:j
s = s*x (i)
end
yarray(j) = s
end

(a) Identify the reasons why we would get error messages.

(b) Notice that yarray if formed with two for loops and is an array, or vector. Consider only
one iteration of the outer loop j, i.e. j=1, and write the sequence defined by the inner
for loop by hand. Identify the mathematical expression for yarray(1).

(¢c) Now consider the second iteration in the outer loop, i.e. j=2, and identify the mathe-
matical expression for yarray(2).

(d) Now consider the third iteration in the outer loop, i.e. j=3, and identify the mathematical
expression for yarray(3) using || notation.

(e) Identify the mathematical expression of the sequence formed by the inner for loop using
[] notation for any value of j.

(f) Explain how your answer to [4e]is different than your answer to [3(a)ii

The spokesperson should be prepared to report your answers written by the scribe to the rest
of the class.

11

Chapter 3

Python and Jupyter Notebooks

3.1 Introduction

3.1.1 Jupyter Notebooks

Python is a programming language and Jupyter is an interactive computational environment where
you can combine code, text and graphs. A Jupyter notebook consists of a sequence of cells of
different types. In a code cell you can edit and write Python code. A code cell has an input section
containing your code and output section after executing the cell. You can execute or run a cell by

e clicking the Run button in the tool bar,
e selecting Cell — Run Cells in the menu bar,

e pressing Shift-Enter

25365
23+18

For example, to compute you would type

- Ju pyt er Untitled Last Checkpoint: 03/06/2019 {unsaved changes)

File Edit View Insert Cell Kernel Widgets Help

B + = @ B 4+ % MHAin B C W Code P =

In []: (2%*5 - 368) / (23 + 18)

and once you run it you would see

- Jupy ter Untitled Last Checkpoint: 03/06/2019 (unsaved changes)

File Edit View Insert Cell Kernel Widgets Help

B |4+ s« & B 4+ & MR | H C W | Code D=1
In [1]: (2%*5 - 368) / (23 + 18)

Out[1l]: -8.195121951219512

In [J: |

12

Note that the prompt numbers next to the code cells (e.g. In [1] and Out [1]) indicate which
cells have been run and in which order. This is very useful, especially if you are running cells
out-of-sequence. Note that not all operations have outputs, for example, print statements. This
is because the print statement doesn’t affect the output. If you would like to see a demonstration
of someone using Jupyter notebooks I recommend watching this youtube video between 6:00 and
15:00 minutes: https://youtu.be/CuFq3YDU6_Y.

Jupyter notebooks are available in MB 136 and you may also choose to install it on your
own computer. I suggest using the Anaconda distribution to install Python and Jupyter. Go to
https://www.anaconda.com, choose to download the most recent version of Python, and follow
the instructions.

3.1.2 Python Syntax

Python syntax may be different than our pseudocode in the Loops and Conditionals lab. The first
significant difference is that in our pseudocode we had an end statement to terminate the if, for
and while loops. Alternatively, Python uses indentation to indicate if commands sit inside a loop.
The : symbol is used to start the indent suite of statements. For example, in Python we would
write a while loop in the following manner

x=0
while x < 4:
x=x+1

This code segment would assign value of 4 to x (justify this to yourself) and you would verify this
by running

print(x)

Another significant programming difference in Python as compared to our pseudocode in the
Loops and Conditionals lab is how we wrote for loops over consecutive integers. In Python we
would do this with the range() function.

e range(n) is equivalent to to the list [0, 1, ..., n - 1]

e range(start, stop) is equivalent to the list [start, start + 1, ..., stop - 1]

Python has both lists and arrays. In this class we will mostly use arrays but we need the package
NumPy to define arrays, which we will do in the next section.
If we wanted to print the first 10 integers, starting at 0 we could run
for i in range(10):
print(i)
which is equivalent to
for i in range(0,10):
print(i)

13

https://youtu.be/CwFq3YDU6_Y
https://www.anaconda.com

and equivalent to
list=[0,1,2,3,4,5,6,7,8,9]
for i in list:
print (i)
This would produce output 0 1 2 3 4 5 6 7 8 9 since we started at 0.
We can also increment the loop and just print the even integers

x = range(0, 10, 2)
for n in x:
print(n)

It is important to note that range() can take only integers as arguments. To iterate over more
general floating point numbers we need the package NumPy.

3.1.3 NumPy

NumPy (numerical Python, pronounced num-pie) is a library that provides advanced mathematical
operations involving statistics and linear algebra. Numpy’s standard data type is an array and right
now that is our main interest in using it.

NumPy is one of many modules in Python. Modules are pre-written collections of operators,
usually designed for a specific purpose or task. To use a module, you must first import it, e.g.

import numpy
To invoke one of it’s operations, precede the operator’s name with the name of the module, followed

by a period. For example, if we want to use an array of floating point numbers rather than a list
of integers

arr = numpy.array([2.1, 3.7, 4.2])
It can be a bit tedious to write numpy repeadly so typically a pseudonym is used when we import
it, e.g.

import numpy as np

so that we can write

arr=np.array([2.1, 3.7, 4.2])

There are numerous NumPy operations e.g.
arr = np.zeros(5)
print(arr)

will print [0. 0. 0. 0. 0.] while
arr = np.arange(10, 30, 5)
print(arr)

14

will print [10 15 20 25].

Numpy provides access to elements of an array using the standard indexing operator [], e.g.
in the last example arr[2] is 20 (note that counting starts at 0). It’s also possible to ask for the
shape of an array using numpy.shape. In the last example

print(np.shape(arr))
will output (4,) which means that arr is a row vector with 4 elements. The shape can also be
found with the command
print(arr.shape)
Please read https://www.pluralsight.com/guides/overview-basic-numpy-operations| for
more examples. As you read these examples, for those who are more comfortable with matrix alge-

bra than programming, think of 1D arrays as vectors and 2D arrays as matrices. This introduction
is showing you how to do matrix algebra on a computer.

3.1.4 Plotting

Another useful Python package is matplotlib, which is a library for constructing plots. One module
within this larger library is pyplot, which presents a simple and easy to use interface for constructing
plots.

import matplotlib.pyplot as plt

Please read the Pyplot tutorial https://matplotlib.org/users/pyplot_tutorial.htmll

3.2 Individual Lab

Part 1:
Please answer the following questions in Blackboard after reading Sections 1.1 and 1.2.

1. True or False: The pseudocode in the Loops and Conditionals Lab can be programmed in
Python exactly at it is written in the Lab.

2. What will happen if we run the following statements in Python

sum = 0
for d in range(0, 10, 0.1):

sum = sum + d
3. Which of the following commands returns a sequence 0, 1, 2, 37
(a) range(0, 3)

(b) range(0, 4)
(c) range(3)

15

https://www.pluralsight.com/guides/overview-basic-numpy-operations
https://matplotlib.org/users/pyplot_tutorial.html

(d) range(4)

4. Wdat is the output for y?

y=20

for i in range(0, 10, 2):
y = y+i

(b) print(y)

y=20

for i in range(10, 1, -2):
y = y+i

print(y)

5. True or False: The following program will terminate:

balance = 10
while True:
if balance < 9:
break
balance = balance - 9

6. What is sum after the following loop terminates?

sum = 0
item = 0
while item < 5:
item = item + 1
sum = sum + item
if sum > 4:
break
print(sum)

Part 2:
Please answer the following questions in Blackboard after reading Sections 1.3 and 1.4.

1. What will be the result in Python

import numpy as np
integers = np.arange(1, 5)
primes = np.array([2, 3, 5, 7])
print (integers * primes)

2. What will be the result in Python

a = np.array([1.0,2.0,3.0])
b=20
print(a * b)

3. Which Matplotlib function generates a histogram?

4. Describe the plot generated by

16

import numpy as np

import matplotlib.pyplot as plt
x = [1, 2, 3]

y = [17 2, 1]

plt.plot(x, y, "ko”)

plt.show()

3.3 Group work

Part 1:

Please work in pairs to program the pseudocode in the Loops and Conditionals Lab in Python using
Jupyter notebooks. The person who identifies as the one with the least programming experience
will be the scribe who types in the Jupyter notebook. The second person will be the spokesperson
and should be prepared to present to the class the following reflections.

e Which part of programming did you find to be the easiest?
e What strategies did you use when you got an error message?

e How did you verify your code was correct?
Here are some suggestions to verify your code is correct:

e Start by choosing a value of n that is small enough you can check your answer by hand. Then
show a result for a large value of n that would be too tedious to check by hand.

e Choose x to be a vector containing random numbers from a normal distirbution with mean
mu and standard deviation sigma. Do this with the Python commands

import numpy as np

x = np.random.normal(mu, sigma, n)

with n representing the number of elements in the vector. Use this strategy to check if your
calculation of the mean is the same as mu. Similarly compare your calculation of the standard
deviation to sigma.

Once you are finished, delete the cells with errors and save a copy of the notebook with output
for each pseudocode in a pdf file. The name of the file should contain the last names of each person
in the group. Upload the file into Blackboard under the Group Assignment for today.

Part 2:

1. Please write your answers to the following questions on the supplied note cards.
Assume you import numpy as np in Python.

(a) Identify the length of each of the following arrays and order them from longest to shortest:

17

arrayl=np.arange(5)
array2=np.arange(1,5)
array3=np.arange(100)
array4=np.arange(1,2,0.1)

(b) Consider that
arrayl=np.linspace(start = 0, stop = 1, num = 50)

is an array with 50 elements that starts at 0 and ends at 1. Let
array2=np.random.normal(0, 1, 50)

Describe the difference between arrayl and array?2.

(c) Estimate the maximum element in each of the following arrays and order them from the
one with the largest element, to the one with the smallest element:
arrayl=np.random.normal(0, 2, 40)
array2= np.random.normal(2, 0, 40)
array3=np.random.normal(40, 2, 40)

2. Please work in pairs to create the following plot. The person who identifies as the one with
the least programming experience will be the scribe who types in the Jupyter notebook. Use
plt.savefig to save the plot as a .pdf file. The name of the file should contain the last names
of each person in the group. Upload the file into Blackboard under the Group Assignment
for today.

(
(

a) Plot y = 1 4 2z with z linearly spaced in the interval [2, 3].
b) Label the axes and make a title for the plot.

(c) Plot y = 8 — x on the same plot that you created in

)

(d) Research documentation on how to create a legend. Create a legend that labels the two
lines on your plot in

18

Chapter 4

Functions

4.1 Introduction

In many cases, you will want to evaluate expressions multiple times using different values of the
variables. While you might be able to cut and paste the expressions multiple times, this is error
prone. It is much better to create a “function” that can be called multiple times using different

arguments.

For example from the Loops and Conditional Statements lab we could simplify the standard

deviation calculation

mu =0
fori=1:mn
mu = mu + x(i)
end
mu = mu/n
s=0
fori=1mn

s =s + (x(i)-mu)"2

end
s = sqrt(s/(n-1))

Instead define

function mymean(x)

n=len(x)
mu =0
fori=1m

mu = mu + x(i)

end

mu = mu/n
return mu
end

so that the standard deviation calculation becomes

19

mu=mymean(x)
s=0
fori=1mn
s =s + (x(i)-mu)"2
end
s = sqrt(s/(n-1))

Once a function is defined it can be used anywhere, including in other functions. For example,
we could also define a function for the standard deviation that uses the function we created for the
mean:

function mystd(x)
mu=mymean(x)

n=len(x)
s=0
fori=1m
s =8+ (x(i)-mu)"2
end
s = sqrt(s/(n-1))
return s

end

so that we only need to type

s=mystd(x)

to get the standard deviation.

You will notice that I did not call these functions mean and std. That is because many libraries
already have functions with those names and it can cause errors to use them in a different way.

Some programming languages make a distinction between “functions” that return values and
“subroutines” that do not return anything but rather do something like produce a plot. In Python
and MATLAB there is only one kind, functions, and they can return single, multiple, or no values
at all.

Argument variables within functions exist in their own namespace. This means that assignment
of an argument to a new value does not affect the original value outside of the function. For example
using the function mymean above if we type

mu=>»s

x=[1, 1, 1, 1]
xbar=mymean(x)
print(mu)

the answer will be 5, which has nothing to do with the mean of x. On the other hand, print(xbar)
will produce the mean of x which is equal to 1.

20

4.1.1 Anonymous Functions

Anonymous functions are in-line functions that can be generated on the fly to accomplish some
small task. You can assign them a name, but you don’t need to; hence, they are often called
anonymous functions. You may find them convenient to send a function like f(x) = cos(x) into a
named function. Most likely the named function will be the important part of the code while f(x)
just tests it. If you use an anonymous function for f(z) then you wont clutter your code with a lot
of one line statements.

4.1.2 Functions in Python

The function to calculate the average that we wrote in pseudocode in the previous section is written
in Python as

def mymean(x):
n=len(x)
mu =0
for i in range(n):
mu = mu + x|[i
mu = mu/n
return mu

The return statement causes a function, loop or conditional to exit or terminate immediately,
even if it is not the last statement of the function, loop or conditional. The return statement also
identifies what variables should be passed out. If no return statement is present within a function,
or if the return statement is used without a return value, Python automatically returns the special
value None when the function is called.

To return both the mean and the standard deviation, we would also create the function

def mystd(x):
mu=mymean(x)
n=len(x)
s=0
for i in range(n):
s =s + (x[i]-mu)**2

s = (s/(n-1))**(1/2)

return mu, s

and call it with

xbar, sigma = mystd(x)

Note that if we typed the statement

print(s)

we would get the error statement NameFError: name s’ is not defined.

An anonymous function is also called a lambda expression so Python uses the general form
21

lambda argl, arg2, ... : output

The arguments argl, arg2, ... are inputs to a lambda, just as for a functions, and the output is an
expression using the arguments. For example, these two functions are equivalent in Python

def f(a, b):
return 3*a+b**2 g = lambda a, b : 3*a+b**2

i.e. f(a,b)=g(a,b).

4.2 Individual Lab

Please answer the following questions in Blackboard Part 1:

1. What value does this function return if you pass in 47

function fact(N)
var =1
while N > 0
var = var*N
N = N-1
end
return var
end

2. What value does this function return if you run mystery(2,5)7

def mystery (X, Y):

HX=Y:

return X*Y
if X >Y:

return X - Y
else:

return Y - X

3. What statement will correctly find the slope of the line passing through the points (1,-2) and
(-1,2)7

def myslope(x1,x2,y1,y2):
slope=(y2-y1)/(x2-x1)
return slope

4. Define the functions

22

def fun_f(x): def fun_g(x):
fun=np.cos(x) fun=x**2
return fun return fun

and identify how to evaluate cos(z2), (cos(z))?, 22 cos(z) and 22 4 cos(z).

5. Review Netwon’s method from Calculus I: http://tutorial.math.lamar.edu/Classes/
CalcI/NewtonsMethod.aspx and answer the question in Blackboard.

6. Review Taylor series from Calculus II: http://tutorial .math.lamar.edu/Classes/CalcII/
TaylorSeries.aspx| and answer the question in Blackboard.

7. Review numerical integration from Calculus II: http://tutorial .math.lamar.edu/Classes/
CalcII/ApproximatingDefIntegrals.aspx and answer the question in Blackboard.

Part 2:

1. What is the nth degree Taylor series polynomial for e*?

2. Assume we want to find the roots of f(z) = 2® — 722 + 8x — 3. Start with an initial guess of
xo = 5 and find the first estimate x1 using Newton’s method.

3. Approximate the derivative of f(z) = sin(x) at x = 1.0 with the formula w and a
step size h = 0.1.

4. Approximate f15 $31+1 dx with midpoint rule. Divide the interval into 4 subintervals of equal

length in your approximation.

4.3 Group work

1. Identify which function does (i) Netwon’s method, (ii) Taylor series, (iii) numerical differen-
tiation, or (iv) numerical integration. Please write your answer on the supplied note cards
e.g. funcl and Newton, func2 and Taylor, etc.

def funcl(f, x, a,b,h): def func2(n,x):
x=np.arange(a,b,h) =0
g = (f(x+h) - f(x))/h for i in range(n):
return g f+= x**i/np.math.factorial(i)
return f

if abs(step) < tol:

return i, x
def func3(x, f, fprime, max_iter, tol): X -= step
for i in range(max_iter): return i, x

step = f(x)/fprime(x)

23

http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx
http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/TaylorSeries.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/TaylorSeries.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/ApproximatingDefIntegrals.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/ApproximatingDefIntegrals.aspx

while (x < b):

def func4(f,a,b,h): sum += h * f(x)
sum = 0.0 x4+=h
x=a+ h/2 return sum

2. Please form a new group of 3-4 people. Each team will consist of:

e The manager, responsible for coordinating the work of the team. The manager is the
person who has the most siblings.

e The spokesperson, who will report your group’s work to the rest of the class. The
spokesperson is the person who has the shortest time to graduation.

e The scribe, who will be responsible for writing down your team’s findings. The scribe
is the person who has taken the most foreign language courses.

e The timekeeper, who will keep track of time for each exercise. The timekeeper is the
person who was not assigned a role already. In case of a three-person group, the manager
takes the role of a timekeeper.

One person should not have more than one role (except for the manager/timekeeper combo),
so if a person who already was assigned a task meets the criteria for another one, the person
who is next in line (i.e., second-longest commute) takes this role.

Each group will be assigned one method and the spokesperson will present their answers to
the following questions to the class.

(a) Newton’s method
i. Explain the inputs and outputs to the supplied function and their dimension e.g. a
scalar or a vector with specific dimension.
ii. Describe x and fprime in the supplied function and their role in Newton’s method.

iii. Describe the role of max_iter and tol in the supplied function. Explain what happens
when they are adjusted.

iv. In the supplied function, there is an initial guess of the root, but it is implicitly
defined. Explain.

v. Give a specific example where you call the function and print or plot the output.
(b) Taylor series
i. Explain the inputs and outputs to the supplied function and their dimension e.g. a
scalar or a vector with specific dimension.
ii. Describe the role of n. Give an example to describe the effect of it being adjusted.

iii. If the supplied function can be used to find Taylor series of any mathematical func-
tion, give an example. If it can’t be used for any mathematical function, how would
you adjust the function to estimate the Taylor series for a different mathematical
function?

iv. Give a specific example where you call the function and print or plot the output.
(¢) Numerical differentiation

i. Explain the inputs and outputs to the supplied function and their dimension e.g. a
scalar or a vector with specific dimension.

ii. What do a,b, and h represent? What is the effect of adjusting h?

24

iii. Give an example of how you would input a specific f.

iv. How could you change the differentiation function so that it takes data rather than
a function as input? What would be potential problems/errors?

v. Give a specific example where you call the function and print or plot the output.
(d) Numerical integration

i. Explain the inputs and outputs to the supplied function and their dimension e.g. a
scalar or a vector with specific dimension.
ii. Describe what happens in the supplied function when we input h<O0.
iii. Explain why this is called the midpoint rule.
iv. Give a specific example where you call the function and print or plot the output.

25

Chapter 5

Working with data files

5.1 Introduction

An important component of any scientific program is the ability to read and write data to files,
and manipulate the data. Consider a generic file data.txt whose contents are:

| fipressure temperature average energy
1 1.01.0 -50.0
{ 1.0 1.5 -27.8
' 2.0 1.0 -14.5
1 2.0 1.5 -11.2

5.1.1 Reading and writing with Numpy

NumPy routines loadtxt() and savetxt() can be used useful for quickly loading and saving simple
array data like that contained in data.txt. For example

mydata = np.loadtxt(‘data.txt’)

creates an array with 4 rows and 3 columns. If a line starts with a number sign (#), it will be
ignored as a comment. Blank lines are also ignored. You can see the dimension of the array with

mydata.shape

which in this case returns (4,3).

If we want to alter the data, say change the average_energy in the third row to -15.4 excecute

mydatal[2,2]=-15.4

We could then save the new data into a new file
np.savetxt(‘data_alt.txt’, mydata)

We can also load each variable into a separate 1-dimensional array. Setting the argument
unpack=True and providing a variable for each column accomplishes this

26

p, T, AE= np.loadtxt(‘data.txt’, unpack=True)

If you want to read in only some columns, you can use the usecols argument to specify which ones

p, AE= np.loadtxt(‘data.txt’, unpack=True, usecols=[0,2])

Similarly, if you can save each variable as a separate 1-dimensional array. If we want to save
the first and third columns

np.savetxt(‘data_alt.txt’, mydata[:,range(0,3,2)])

Note the indexing of the array.

5.1.2 Formatting

By default, when using savetxt in Numpy the numbers will be written in scientific notation. The
fmt argument can be used to specify the formatting. If one format is supplied, it will be used for
all of the numbers.

The general form of the fmt argument is: fmt = ‘% (width). (precision)(specifier)’ where width
specifies the maximum number of digits, precision specifies the number of digits after the decimal
point, and the possibilities for specifier are shown below. For integer formatting, the precision
argument is ignored if you give it. For scientific notation and floating point formatting, the width
argument is optional.

Specifier Meaning Example Format Output for -34.5678
i signed integer %51 -34
e scientific notation %b5.4e -3.4568e+001
f floating point %5.2f -34.57

For example

np.savetxt(‘data_alt.txt’, mydata, fmt=(‘%3.1f", ‘%3.1f", ‘%4.1f"))

saves the columns as floating point numbers, rather than scientific notation, in the file data_alt.txt.

5.1.3 Pandas

Pandas is a Python software library written for data manipulation and analysis. It can give more
functionality with data than is directly available with Numpy arrays.

import pandas as pd

The name Pandas comes from an econometrics term for data sets: panel data. While there are
many different important features of Pandas, here we will just talk about them in terms of CSV
files.

CSV is an acronym for “comma separated values” but really most interpretations of it can be
assumed to mean delimter-separated values files. This means data are separated in each row with
delimiter characters. Most spreadsheet programs do this, as does the file data.txt. For example

csv_data = pd.read_csv(‘data.txt’)
print(csv_data)

results in the following
#pressure temperature averade_energy

0 1.0 1.0 -50.0
1 1.0 1.5 -27.8
2 2.0 1.0 -14.5
3 2.0 1.5 -11.2

In order to access the data as arrays as we did with Numpy, we need to sort them in columns.
This is done by adding the option sep="‘ "in pd.read_csv, leaving a blank space between the quotes
so pandas can detect spaces between values. In addition, we can skip the first line that contains a
comment by setting the parameter header to None and using skiprows

csv_data = pd.read_csv(‘data.txt’,skiprows = 1,header=None, sep="")

which results in

0 1 2
0 1.0 1.0 -50.0
1 1.0 1.5 -27.8
2 2.0 1.0 -14.5
3 2.0 1.5 -11.2

Before working with the data, it is a good idea to check the information that is stored in
csv_data. First, check the dimension by

csv_data.shape

Second, check the data type (e.g. string, integer, floating point number) by
csv_data.dtypes

This gives output
0 float64
1 float64
2 float64
dtype: object
This means that columns 0-2 consist of floating point numbers, which is what we would expect.

In order to work with the floating point numbers in the data structure we need to assign a label
to each column

csv_data.columns = [‘Pressure’ ‘Temperature’, ‘Average Energy’]

Then we can access the first column with

csv_data.Pressure

and the second element in the first column With28

csv_data.Pressure[l]

If we want to manipulate the data and do arithmetic operations, e.g. see if pressure and average
energy are proportional we can find the constant of proportionality for the second row

const=csv_data.Pressure[l]/csv_data.Average Energy|[1]

We can also find an array of constants for each row

const_array=csv_data.Pressure/csv_data.Average Energy

5.2 Individual Lab

You may use the file data.txt available in Blackboard to answer the following questions after reading
the Working with data files lab.

1. As described in Section 1.1, what is the result in Python if you execute p.shape?

2. As described in Section 1.1, data is saved to the file data_alt.txt twice. Note that each
time you use the command np.savetxt it overwrites the existing file (if there is one). What
does the file data_alt.txt look like after the second execution, i.e. np.savetxt(‘data_alt.txt’,
mydata[:,range(0,3,2)])?

3. As described in Section 1.2, what does the file data_alt.txt look like after the execution
np.savetxt(‘data_alt.txt’, mydata, fmt=(‘%i3’, ‘%3.1", ‘%4.11"))

4. As described in Section 1.3, what is the output when csv_data.shape is executed?

5. As described inSection 1.3 what is the output when const=csv_data.Pressure[1]/csv data.Average
Energy[1] is executed?

5.3 Group work

Please work in pairs to load, plot and analyze the data in the file galton.dta available in Blackboard.
This data file contains the heights of children and their parents. The file extension .dta comes form
the statistical software package STATA which integrates well with Python. You will plot these
data to see if the heights of parents and children look to be related linearly. Next week we will talk
about fitting a least squares regression line to the data.

1. Let’s start by loading the data and get comfortable with its contents by executing the following
commands

import pandas as pd

df = pd.read_stata(‘galton.dta’)
df.shape

df.dtypes

29

Be prepared to describe the categories, their formats and values. I suggest printing
a subset of the data values to help understand each category, e.g.

print(df.family[1:10])

Note that the category family is a family ID variable, as the data include multiple children
per family.

. Plot the heights of mother vs kid and father vs kid. Make sure to plot data points using either
‘. or plt.scatter and not a continuous line. Be prepared to discuss the potential linear
relationship between the mothers’ height and the kids’ height. Also, the potential
for the fathers’ height to be linearly related to the kids’ height. It may help to make
both axes equal to each other and try different scales to come to your conclusions.

. Investigate the linear relationship between just the boys height and their father’s height. In
order to do this we must only use those rows of the data that refer to males. Start by creating
an array with only the boys’ height

boy_height=df.height[df.male == 1]
In order to compare it to the father’s height we need to shorten the father array in the same

manner so it only contains rows corresponding to their boy’s height

boy_father=df father[df.male == 1]

Plot the heights of the fathers vs their boys and be prepared to discuss if you think
there is a stronger linear relationship than those you saw in

. Now investigate if there is looks like there is a linear relationship between just the girls’s height
and their mother’s height. Compare how their linear relationship looks to those you
observed in [2] and [3l

30

Chapter 6

Linear Regression

6.1 Introduction

Linear regression is a way to understand the linear relationship between two or more variables.
This relationship can be written as a mathematical formula and used to

e describe the linear dependence of one variable on another.
e predict values of one variable from values of another.

e correct for the linear dependence of one variable on another, in order to clarify other features
of its variability.

The correlation coefficient, on the other hand, measures the strength of a linear relationship
between variables. This is different from regression which focuses on the mathematical form of the
relationship.

6.2 Simple Linear Least Squares Regression

In simple linear regression the mathematical problem is as follows:
Given a set of k points (x;,y;) i=1,2,....k

assume they are related through the equation
yi ~ by + b1z

where by and by are constant (unknown) coefficients. Most data (z;,y;) contain noise and it is not
possible for every data point to satisfy this linear relationship. Therefore we seek to find by and by
so that

yi = bo + biw; +ny

where n; represents the noise in each data point.

31

For least squares regression we assume the noise n; follows a Gaussian or normal distribution.
Our goal is to find coefficients by and b; and form the best fit, or regression line

y(z) = bo + by (6.1)

If the noise has zero-mean we find by and b; by minimizing .S, the sum of squared errors:
k
S = Z(yi — i)°.
i=1

We can use multivariable calculus to find the values of by and b; that minimize S but we will
not go through the derivations here. If we let px denote the mean of x and py the mean of y, then
the coefficients by and b; can be written in the convenient form

bo = py—biux
b~ (=) (i = py)
Zf:l(xi — fix)?

The predicted value of y at any point x is given by ¢(x) in (6.1)). At the data points z;, §(x;)
will most likely not equal the observed value y;. The residual e; = y; — 3(x;) measures how far the
prediction is from the observations. The variance in the residual is

k 2
2 D16
= = 6.2
N (62)
The k£ —2 in the denominator is known as the “degrees of freedom”, and is computed by subtracting
the number of parameters estimated (by and by) from the number of observations.

6.3 Correlation Coefficient

The coefficient of determination r2

data. It is defined as:

is a measure of how well the regression line represents the

k 2
P2 =1 > i1 € (6.3)

S (i — py)?
In simple linear regression, the correlation coefficient r is simply the square root of the coefficient
of determination. One advantage of r is that it is unitless, allowing researchers to make sense of
correlation coefficients calculated on different data sets with different units.

As an example consider r = 0.9, i.e. 72 = 0.81. This means that 81% of the total variation in y
can be explained by the linear relationship between x and y. The other 19% of the total variation
in y remains unexplained.

6.4 Multivariate Linear Least Squares Regression

Simple linear regression is limited because we can only consider two variables of interest. For
example, a child’s height (y) may depend on both their mother’s (x1) and father’s (x2) height. In

32

simple linear regression we only have the following two equations to work with
§(x1) = bio + buiz1 and §(x2) = bao + bar72

where b1g, b1 are the constants for simple regression with their mother’s height bog, bo1 and are the
constants for the father’s. The problem with two separate regression lines is that neither captures
how y depends on x1; and xo simultaneously. In fact, by not including all confounding factors in
the simple linear regression equations we create bias in our estimate of the child’s height.

Multivariate regression is a step towards remedying this by adding variables to the simple
linear regression case, i.e.

9(z1,22) = by + brx1 + baza.

A good way to think about regression is that we’re finding weights (b1, b2) that determine the
importance of each of the variables (x1, x2). To visualize this relationship, we need to think in
three dimensions. Before, with simple regression, we could plot the relationship on a 2D graph.
Now the data points are in a 3D space of child’s height, mother’s height, and father’s height. Here’s
a picture of a 3D scatterplot.

250
200
150
100
50

5885

—50 20

120 100 80 60 40 20 o a9

Note that this graph does not represent the height data we have been talking about, i.e. x; €
[—20,120], z2 € [0,100] and y € [—50, 250].

When we run a regression in this space, we find a regression plane, not a regression line. This
plane in 3D space has two different slopes: the amount it increases when you increase the x variable
and the amount when you increase x2. The variables b; and bs describe the two slopes but there is
only one intercept by which is the value of the plane where it touches the vertical y-axis. Here is a
picture of a different 3D scatterplot with a 2D regression plane.

33

Visualizing multvariate regression helps our understanding of the process. However, we will not
focus on this aspect as it needs more attention than we have time and can be found in a course
focused on visualization.

In order to find equations for the multivariate coefficients by, b1 and by we use the matrix form
of regression. If we have two independent variables (e.g. mother’s and father’s height) the data are
(zi1,xi2,9;) 1 = 1,..., k. Each data point satisfies

Yi = bo + bixin + bawio + n;.

All the data can be written simultaneously with the the matrix equation

Y1 1 z11 12 ni
Y2 1 @21 w22 bo)
= . . ; by | +
s : by
Yk 1 g1 o ny

We can write this matrix equation more simply as

y = Xb + n. (6.4)

The least squares strategy for finding b is the same as in the simple linear regression model,
but in multi-dimensions. We minimize S, the sum of squared errors

k

2
S = Z (% — §i(w1,72))* = > _(y — Xb)7.

=1 =1

We again use multivariable calculus to find the values in b that minimize S but we will not go
through the derivations here. The coefficients can be written in the convenient form

b= (XTX)"'XTy. (6.5)

The variance in the residual 62 and the correlation coefficient r are calculated in the same
manner as for simple linear regression in (6.2)) and (6.3)), respectively. The R? value in multivariate
linear regression is often called the coefficient of multiple determination.

6.5 Matrices in Python

Multivariate regression requires us to create matrices and solve systems of equations. Vectors such
as v € RF can be thought of as a special case of a matrix like A € RF*P. With that thought in
mind creating a matrix in Python is very similar to creating a vector. Recall to create the vector
we type

v=np.array([1,2,3])
1

This is a row vector [1,2,3], i.e. v € RY3. Instead, let’s create it as a column vector | 2 | € R3*!
3

34

v_col = np.array([[1],

(2],
3]])
In Python v has shape (3,) while v_col has shape (3, 1).

Viewing the difference between row and column vectors helps us see how a vector is a special

1 2 3
case of a matrix. For example the matrix A = | 3 4 5 | € R3*3 is created in Python by
6 7 8
A = np.array([[1,2,3],
[3,4,5],
[6,7,8]])

Matrix indexing is similar to vector indexing. For example, As3 = 5 and this is accessed in
Python with A[1,2]. (Recall that Python indexing starts as 0). If we want to access the last two
columns of the first two rows

print(A[:2, 1:3])

returns

[[2 3]
[4 5]

Matrix algebra such as addition, subtraction and multiplication requires that the dimension of
the matrix and vectors “agree”. For addition and subtraction, the objects must have the same
dimension. In Python we can simply type v+v or A+A.

WARNING: If we type v+v_col this should give us an error but instead we get

[[2,3.4],

[3,4,5],
[4,5,6]])

I suggest thinking about how Python is interpreting this algebra.

Matriz multiplication such as Av,, requires that the number of columns in A equal the number
of rows in v,;. The process of matrix multiplication involves multiplying each row by each column.
If you haven’t done this in awhile, I recommend reviewing it. Matrix multiplication in Python is
done with the np.dot() command, e.g.

print(np.dot(A,v_col))

produces the correct answer
[[14]

[26]
[44]]

WARNING: If we type print(np.dot(A,v)) this should give us an error (why?) but instead we get
35

[14 26 44]

Fortunately, if we type print(np.dot(v_col,A)) we will get an error message while if we type print(np.dot(v,A))
we get the correct answer (what is it?). While Python has advanced capabilities for data analysis,
unfortunately it falls short with matrix algebra.

Our focus here is to solve the linear system Xb =y for the multivariate regression coeflicients.
More advanced courses in computational math focus on algorithms to solve linear systems, while
in this introductory course we will just the existing library np.linalg.solve().

For example solve Av,, =y for v.y,. First we form y, then use np.linalg.solve to estimate v..;:

y =np.array([[14],
[26]7

[44]])

v_col_est = np.linalg.solve(A,y)

print(v_col_est) gives us the estimate

[(2.]
[0.]
[4.]]
1
Interesting! The correct answer is v,y = | 2 | and the estimate v_col_est is very different. The
3

issue is not that Python is doing something fishy with our matrices and vectors. Rather, the issue
is the mathematical solution of Av., =y has issues. We’ll talk more about this later.

Let’s say we don’t know know the correct answer is v.,;. How can we check if our answer is
correct? Naively, we could take our estimate v_col_est, multiply it by A and see if we get y

print(np.dot(A,v_col_est))

The result is

[[14]

Interesting! The matrix multiplication gave us the correct y even though our estimate v_col_est
was incorrect. More on this later.

6.6 Individual Lab

Simple Linear Regression
These questions should be completed in Blackboard before class. For the data (0,0), (-1,1) and
(4,-1) answer the following questions in Blackboard

36

1. Find the regression coefficients by and b;.
2. Find the predicted value of y at x = 2.

3. Find the residual ez = yo2 — g(x2).

4. Find the variance in the residuals.

5. Find the correlation coefficient between between x and y.

Multivariate Linear Regression

1. Consider the multivariate data (x1,z2,y): (—2,4,1),(—2,1,0),(0,0,2),(1,1,3) and assume
we fit it to the line §(x1,x2) = by + biz1 + baza.

(a) Identify the matrix X in (6.4)).

(b) Identify the vector y in (6.4)).
bo

(c) Identify the formula for the coefficients b= | b; | in (6.5).
by

(d) The estimates of the coefficients are by = 1.83,b; = 1,bo = 0.28. How would you
interpret these values?

1 -2 4
1 -2 1 . .

2. f X = 1 0 o then the following values of b and y satisfy Xb =y.
1 1 1

6.7 Group Work

Simple Linear Regression

Please write your answers to the following questions on the supplied note cards.
1. Given the data (0,0), (-1,1) and (4,-1) write the commands that create Numpy arrays x and
y containing the x and y coordinates, respectively.

2. Given only a Numpy array x, write a function that computes the mean of the elements in x.
Please complete the remaining questions in groups of 2-3 people.

3. Using only pen and paper, create a function regcoef(x,y) that returns the linear regression
coefficients by and b;. Use these tips and be prepared to explain to the rest of the class why
one should follow them.

(a) First write a function to compute the mean and call it within regcoef
(b) Form by before by.

(¢) Form the numerator and denominator in by separately

37

(d) Call the function that computes the mean first.

4. Code your functions from [3]in Python and test them by finding the linear regression coeffi-
cients for the data (0,0), (-1,1) and (4,-1). Use the answer you found in the homework due
today to check that your function is working correctly. Be prepared to discuss with the class
the errors you encountered and your debugging strategies.

5. Define two anonymous functions: one to compute ¢ and a second to compute residuals e;.
Define the functions so that you can form the residual vector e with one line. Be prepared to
discuss the function inputs and how you would access each element e;.

6. Write a regular function that computes the variance in the residual and use your anonymous
functions from |5l Check that your function works by testing it with data (0,0), (-1,1) and
(4,-1) for which you know the correct answer. Be prepared to discuss with the class the errors
you encountered and your debugging strategies.

7. Write a regular function that computes the correlation coefficient. Again check your answer
with data (0,0), (-1,1) and (4,-1) for which you know the correct answer. In addition, plot
the data and the regression line on the same graph. Be prepared to discuss with the class
how well the line predicts points other than the data.

Multiple Linear Regression

An important characteristic of a semiconductor product is the pull strength of a wire bond. We
will investigate the suitability of using a linear multiple regression model to predict pull strength y
as a function of wire length z; and die height x».

1. Load the data in wire.txt and form one dimensional arrays ¥y, x1 and xs. Here are some tips
(a) Refer to the Working with data files Lab to remind yourself how to read and work with
a data file.

(b) Identify the shape of the array you created when loading the data. All the data will be
loaded into one column. Separate it into the correct number of rows and columns by
following the instructions on the bottom of page 2 and top of page 3 in the Working
with data files Lab.

Be prepared to discuss the shape of the arrays y, 1 and x2 and how they relate to our formula
for the regression coefficients b in equation (6.5]).

2. Form the regression matrix X in (6.4). Note that it has 3 columns and here are some tips

(a) You can transpose a matrix A by executing A.transpose()
(b) You can create an array of 1s using np.ones.

(¢) You can stack 1-D arrays as columns using np.column_stack
Be prepared to discuss challenges in getting the dimension of X correct.

3. The formula for b in (6.5) involves finding the inverse of the matrix X”X. Don’t use that
formula, rather find b by solving the system X7 Xb = XTy because that is a more accurate
and efficient approach on a computer.

38

(a) Use matrix algebra to explain why forming b as described in (6.5)) is the same as solving
the system XTXb = X'y for b.

(b) Form the matrix A = XTX and the vector rhs = X”y and use np.linalg.solve to solve
Ab = rhs.

Be prepared to report the dimension of A and rhs and your values for the coefficients b;, i =
1,...3.

39

Chapter 7

MATLAB

7.1 Introduction

This semester we have be using Python, a free, open source programming language. Python has
matured significantly over the past years and Juypter notebooks have made it more accessible.
However, as we saw at the end of the Linear Regression Lab, the linear algebra capabilities can be
awkward. For example, Python does not inherently distinguish between row and column vectors,
it gives non-unique solutions to linear systems without warning, while indexing from 0 is not how
vectors and matrices are typically referenced in mathematics.

Since this is a computational math course with significant focus on numerical linear algebra,
we will begin to implement more complex algorithms in MATLAB. MATLAB is a commercial
numerical computing environment and programming language. Since it is a commercial product,
we cannot see the code for the built in functions and have to trust they are implemented correctly.
MATLAB also has problems with portability, meaning it is quite possible if you run your MATLAB
code on a different computer you may get a different answer. On the plus side, MATLAB originated
as a matrix manipulation package and doesn’t suffer from the problems mentioned above that we
with found with Python.

You may continue using Python, but this may be more work when we use specific MATLAB
functions. In most cases, there are Python functions equivalent to those we use in MATLAB, but
it will take time for you to identify and use them on your own. Please keep in mind that the focus
of this class is not the particular language you program in, rather understanding the computational
algorithms. The algorithms and computational thinking you develop in this class are foundational,
while particular languages may change in the next 5-10 years.

MATLARB is available on most all university computers. As a Boise State student you may
also download it on your computer for free. Instructions can be found in the link in the syllabus.
You will need to create a Mathworks user name and password, which is the parent company of
MATLAB.

40

7.1.1 Working with data in MATLAB

Let’s start using MATLAB with a new data set that contains the US census for regarding population
and race in Billings, Montana. The file is named census.txt:

Year TotalPop AsianPop BlackPop HispanicPop MNativePop WhitePop

0 1960 13806 NaM 187 NaM MNaN 13619
1 1970 19373 NaM 74 NaM MaN 18888
2 1980 25210 NaM 121 781.0 MaN 23802
3 1990 24877 187.0 159 871.0 945.0 23254
4 2000 24642 165.0 153 1257.0 1083.0 22227
5 2010 29297 282.0 326 1835.0 1620.0 25577

You can load this into MATLAB with the command
C_table=readtable(‘census.txt’)

To see the contents of the file type C_table without a print statement.

Two big differences between Python and MATLAB that may take a bit to getting used to are
that indexing starts at 1 and elements in an array elements are accessed with () in MATLAB

rather than [] in Python. In particular if you want to access the first two rows, this is how it works

in MATLAB
>> (_table(1:2,:)

ans =
2x7 table

Year TotalPop AsianPop BlackPop HispanicPop NativePop WhitePop

1960 13806 NaN 187 NaN NaN 13619
1970 19373 NaN 74 NaN NaN 18888

while if you want to access the second row and third column it works like this
>> (C_table(2,3)

ans =
table

AsianPop

NaN
The notation NaN stands for Not a Number and MATLAB will overlook those values if we try

to use them. In order to access elements in the table we first have to convert the table to an array
with the table2array function

41

C_array=table2array(C_table)

If we want to get rid of the NaN data we could use the isfinite logical command. If there is a finite

numerical value in an element of the array the logical argument is “true” and MATLAB returns a 1.

Otherwise the logical argument is false it returns a 0. For example, if we look for finite values in the

Native American population we see that only the last three elements in the column have finite value
>> isfinite(C_array(:,6))

ans =

6x1 logical array

[y X

We can use isfinite to form a shortened array of data with only finite values. If we continue just
viewing the Native American population the commands would be

isdata=isfinite(C_array(:,6))
N_pop=C_array(isdata,6)
N_years=C_array(isdata,1)

Note that N_years creates a three dimensional array that corresponds to the years for the data
in N_pop. Since MATLAB ignores the NaN value the following two commands produce the same
scatter plot:

figure(1);plot(C_array(:,1),C_array(:,6), *?)
figure(2);plot(N_years,N_pop, ‘*?)

If we wanted to plot Hispanic and Native American population data on the same graph with a
legend these are the commands in MATLAB

plot(C_array(:,1),C_array(:,5),“*’,C_array(:,1),C_array(:,6), “*’,‘LineWidth’,3)
legend (‘Hispanic’,'Native American’)

xlabel("Year’); ylabel(‘Population’)

title(’Census data for Billings, Montana’)

shg

7.2 Group work

You may work in groups to answer the following questions however, everyone must create their own
scripts and print their own plots.

1. Create a script that loads the census data and creates arrays N_pop and N_years that contains
only finite values of census data as described in the lab. In addition, in your script create
arrays with only finite values of census data for the Hispanic population. Be prepared to
discuss with the class how do you verified that you correctly created the arrays.

42

2. Plot the Hispanic population and Native American population with C_array as described in
the lab with a legend, title and axis labels. Be prepared to discuss with the class the purpose
of the shg command and how to change the size of the data points.

3. Plot the Hispanic, Native American and White populations in one plot, similar to what you
plotted in[2] Then plot the Native American and White populations in separate plots. You
can make two separate plots by using the commands

figure(1); plot(C_array(:,1),C_array(:,6),“*’,‘LineWidth’,3)
figure(2); plot(C_array(:,1),C_array(:,5),*’,‘LineWidth’,3)

Include legends, title and axes label in each graph. Be prepared to discuss with the class
challenges and benefits of plotting multiple graphs with one plot and with different plots.

4. Use the aris command to view each plot in[3] for the years 1960 to 2020. You can learn about
the azis command by typing help axis at the MATLAB prompt. Print your graphs and draw
a curve through the data points on each graph with a pen or pencil.

5. Extend your drawn in curves in so that they start in 1960 and end in 2020.

43

Chapter 8

Polynomial Interpolation

8.1 Introduction

Linear regression uses a line, plane or hyperplane in high dimensional space to describe (model)
a collection of data points. More specifically, in two-dimensions, given a set of n points (z;,y;),
i =1,2,...,n, simple linear regression involves the assumption that the data are related through
the equation y; = by + bix; and the goal is to find coefficients by and b;.

In two dimensions it is not possible for every data point to satisfy y; = by + b1x; unless n = 2
i.e. there are only two data points. In linear algebra terminology, when n = 2, we can fit each data
point to a line because there are the same number of equations as unknowns. This means we can
set up a square linear system y = Xb where

1 bo
As long as the two data points have two different y values corresponding to x1 and x5, these two
points uniquely determine a line.

When n > 2 the linear system of equations that results when we fit the data to a line is
overdetermined, i.e. there is a greater number of equations than unknowns. Most of the time this
means there is no solution and hence no coefficients by and b; that produce a line that fits all
of the data. We got around this issue by finding b; that minimize the sum of squared errors:

S = Z?:l(yi - Qi)Q-

8.2 Interpolation with the Vandermonde matrix

Rather than minimize the error in our data and the predicted line at the data points, let’s extend
the idea of creating square systems of equations so that we can fit (or model) each data point
exactly. If we have n + 1 data points we can create the same number of equations by fitting them
to a nth degree polynomial

pn(x) = ap + a1z + asx?® 4+ azz + ...+ apz™.

This is called polynomial interpolation when y; = p,(z;) for all (x;,v;), i =1,2,...,n+ 1.

44

The system of equations for polynomial interpolation is

y1. = ao+taixy+ agxf + agx:f + ...+ apzy
Yo = ag+aire+ agxg + agxg + .t apTy
2 3
Yntl = Q0+ a1Tpy1 + 2T, 1 +a3T) q + ..+ apTy .

The matrix equation that results from this system is y = Va with

Y1 1 z? B ao

Y2 1 3 R ar
2 3 n

Yn+1 1 xpy1 @y whyy o0 Ty an,

where the matrix V in the system is called a Vandermonde matrix.

Polynomial interpolation using the Vandermonde matrix is not typically used in practice. It
is not practical because for a large number of data points it is expensive to solve the system of
equations and the matrix has a large condition number. A large condition number means if you
change the data slightly you will get a very different result. In other words the problem is unstable.
Also, if you add data points, you have to solve an entirely new problem.

8.3 Lagrange Interpolation

Lagrange interpolation is an attractive alternative to using the Vandermonde matrix because you
don’t have to solve a system of equations to find the interpolating polynomial. In addition, you
can easily add data points without having to start the process from scratch.

The difference in between using the Vandermonde matrix and Lagrange interpolation is how
we write the polynomial. For example, y = 2 — 3z 4+ 22 and y = (z — 2)(x — 1) are different ways
of writing the same quadratic polynomial. The former would be the view for the Vandermonde
matrix while the latter is how Lagrange Interpolation is written.

If we have two data points (x;,¥;), i = 1,2, the unique line that fits them is represented with
the Lagrange polynomials as
(x — x2)
(z1 — 22)

(x — x1)
(22 —21)

p1(z) = yili(w) + yala(x); Li(z) = Ja(w) =
Similarly if we have three data points (z;,v;), ¢ = 1,2, 3, the unique quadratic polynomial that fits
them is represented with the Lagrange polynomials as

p2(z) = wyili(z) + yela(z) + ysls(z);
h(z) = (x — x9)(x — x3)

(x —x1)(x — x3) la(z) = (x —x1)(x — z2)
(1 — x2) (21 — w3)

hie) = (w2 — 21) (22 — T3) %)= (z3 — @1)(w3 — 22)

Notice that the coefficients for the polynomials are simply the y; data which is why we don’t have
to solve a system of equations. In addition, we can add data more simply than in the Vandermonde
matrix case.

45

For the more general case with n data points the Lagrange polynomial form of interpolation is
written

po(@) = yih(z) + y2lo(@) + . 4 yaln(2) = D yili(w)
i=1

where

8.4 Runge Phenomenon

There are some pitfalls that occur when fitting a polynomial to data. As an example, let’s simulate
six data points by sampling the function y = mﬁ at equally spaced points on the interval [—1, 1].
We can create the (x,y) data pairs (—1,0.0385), (—0.6,0.1) (—0.2,0.5) (0.2,0.5) (0.6,0.1) (1,0.0385)
in MATLAB with the following commands

n=~06;
f=Q(x) 1./(1 + 25%x."2);

x=linspace(-1,1,n);
y=f(x);

Polynomial interpolation with a 5th degree polynomial results in the following graph

1

® data points
—— 5th order polynomial

08 - —y=1/(1+25x%)

0.6 -

> 04 -

0.2 -

o

-0.2
-1 -0.5 0 0.5 1

X

We see that the 5th degree interpolating polynomial does a particularly poor job of interpolating
at the peak and near the endpoints of the interval. Lets try to increase the accuracy by adding
more data points and letting n = 10.

1

® data points
—— 5th order polynomial
9th order polynomial
—y=1/(1425x%)

0.8

0.6 -

0.4 -

>

0.2 -

op

-0.2

-0.4

46

We are getting closer to modeling the peak, but the end points are getting worse. Notice that the
y axis range increased to -0.4. Let’s again try to improve the approximation by interpolating 14
points

® data points
—— 5th order polynomial
9th order polynomial
~—— 18th order polynomial

— y=1/(1425x3)

-1 -0.5 0 0.5 1
X

Notice that the approximation is getting worse at the endpoints as we increase the number of data.
This is called Runge phenomenon and unfortunately it can happen in situations where data is
collected on an equally spaced grid.

We can avoid Runge phenomenon by using data at points that are not equally spaced. The data
spacing that gives the best approximation are the Chebyshev points. Chebyshev points are defined
on the interval [—1, 1] as xj = cos (Qk L) for k =1,...,n. Here is a plot of them compared to an
equally spaced grid:

0.8~ * Equally spaced points |
0.6

0.4 -

02-

Ofckex of o of o ko efe W eKe H eX e Ke o e fek

0.2~

0.4+

-0.6

-0.8 -

-1
-1 05 0 05 1

We see that the Chebyshev points are more clustered at the endpoints which gives some intuition
as to why they help prevent Runge phenomenon. The Chebyshev points can be defined on any
interval [a,b] by z = $(a +b) + (b — a) cos (2k L) for k =1,.

Let’s use the Chebyshev points to interpolate y =
MATLAB commands

1+25 —=—> on the interval [—1,1] with the

n—14'

—@(x) 1./(1 + 25%x."2);
x=cos((2.%[1:n]-1)*pi./(2*(n)));
y=f(x);

Then we get a good approximation

47

® data points
05- 13th order polynomial, chebyshev points
—y=1/(1+25x%)

04r

03

02-

o1

8.5 Splines

We can improve the behavior of the single polynomial interpolant by adjusting the location of
the points where we interpolate as we did with Chebyshev points. However, if we do not have a
choice as to where to place the data points then we are not able to interpolate all of the data.
Another option is to construct piecewise polynomials through subsets of the data through spline
interpolation.

The most common approach to spline interpolation is to create separate cubic polynomials
Si(x) = a(x — x3)> + bz — 2)* + c(x — x;) + d

over subintervals [z;, x; 11| with S;(x;) = y; and Si(z;1+1) = yi+1. Note that there are four unknowns
in each subinterval and only two interpolation points. A square system of equations is formed by
adding continuity conditions such as Si(z;41) = Siy1(ziq1) and Sj(wi41) = 5§, (2i41). The result
is a tridiagonal linear system that is solved for coefficients of each of the i cubic polynomials that

make up the interpolating spline over the whole interval.

As an example, consider the census data from Billing, Montana in ten year intervals from 1960
to 2010. Since there are six data points there are five cubic polynomials in the spline interpolant.
We find the coefficients for each of the five cubics all at once using the spline function in MATLAB.
Let’s consider only the white population:

C_table=readtable(’census.txt’);
C_array=table2array(C_table);
x=C_array(:,1);

y=C_array(:,2);

p-spline = spline(x,y);

The coefficients a, b, ¢, d for each piecewise polynomial are in p_spline. Given these coeflicients we
can find the interpolating polynomial over the whole interval using ppval. As usual we will evaluate
the polynomial at 100 points to get a continuous looking interpolant

a=min(x);b=max(x);
xs = linspace(a,b,100);
y_spline = ppval(p_spline,xs);

48

The following is a graph of y_spline. To the naked eye our result looks like the fifth order
interpolant even though y_spline is a series of cubic polynomials rather than one single fifth order
interpolant. I've highlighted each piecewise cubic polynomial in the graph, but normally you
would just plot(xs,p_spline) and not highlight the fact that there are different polynomials on each
subinterval.

4
3 x10

T T T T X
2.8

26 - q
24 - q

227 ® data points
—8,
_— Sz(x)

S50
—S 4(x)
J— Ss(x)

12 L L L L
1960 1970 1980 1990 2000 2010

You can predict the population in 2005 by typing

y_spline = ppval(p_spline,2005);

and the prediction is 26,136 people.

The piecewise polynomial found by spline is returned as a structure in p_spline. Since the
functions spline and ppwval are compatible we didn’t have to think about this when creating and
plotting the interpolating polynomial. However, if we want to understand how many piecewise
polynomials are in the whole interpolating polynomial and possibly values their coefficients, we’ll
need to understand the structure. The structure has the following fields which can be displayed by
typing p_spline:

p_spline =
struct with fields:

form:
breaks: [1960 1970 1980 1990 2000 2010]
coefs: [5x4 double]
pieces: 5
order: 4
dim: 1

lppl

A description of each part of the structure is given in the following table

output meaning

form: ’pp’ the form is a piecewise polynomial

breaks: [1960 1970 1980 1990 2000 2010] | the start and end of each .S; interval

coefs: [5x4 double] each row contains the coefficients of the ith polynomial S;
pieces: 5 number of piecewise polynomials on the interval

order: 4 order of the polynomial

dim: 1 dimension of your interpolating polynomial

You access each part of the structure by typing p_spline.form, p_spline.breaks, p_spline.coefs etc.

49

For example, p_spline.coefs is a 5x4 matrix and we access the second row by typing p_spline.coefs(2;:).
The result is

ans =
1.0e+04 *

-0.000165453333333 0.000135000000000 ©.073565333333333 1.937300000000000

With this information we can form Ss(z) that is defined on the interval [1970, 1980]

Sa(x) = —1.655(x — 1970)3 + 1.35(z — 1970)2 + 735.65(x — 1970) + 19, 373.

8.6 Individual Lab

Part 1

1. Given the data points (-2,4) and (-1,3) identify the Vandermonde matrix.

2,4) and (-1,3) identify the Lagrange polynomials.

(-2,4)

2. Given the data points (-2,4), (-1,3) and (0,5) identify the Vandermonde matrix.
3. Given the data points (-2,4)
(-2,4)

4. Given the data points (-2,4), (-1,3) and (0,5) identify the Lagrange polynomials.

Part 2

1. The following are Chebyshev points on the interval [—1, 1].
2. The following are Chebyshev points on the interval [2, 3].

3. The following are values of y = e~ evaluated at the Chebyshev points on the interval [—1, 1].

Part 3

Use the Census data from Billings, Montana to interpolate the population of black people from
1960 to 2010 and answer the following questions:
1. How many piecewise polynomials are defined on the interval [1960,2010]?

2. The formula for the piecewise cubic spline interpolant is the same as the formula for the fifth
degree polynomial interpolant.

3. The graph of the piecewise cubic spline interpolant looks the same as the graph for the fifth
degree polynomial interpolant.

4. The coefficients for the cubic spline on the interval [1980,1990] are:

50

8.7 Group Work

You may work in groups or individually to answer the following questions.

Part 1

1.

(a) Use the vander command in MATLAB to create the Vandermonde system with the
census data in census.txt. You may type >> help vander at the MATLAB prompt to
learn how to use the function, or Google it.

(b) Find the coefficients for polynomial interpolation of the total population. The backslash
command \ solves a linear system of equations in MATLAB. For example x = A\b solves
the system of linear equations Ax = b.

Be prepared to discuss: (1) inputs to the MATLAB function vander, (2) any issues you had
with solving the system of equations with the \ command and (3) the degree of the polynomial
that interpolates the data.

. Plot the data and the interpolating polynomial on the same graph and consider the following

(a) Test your understanding of polynomial interpolation by coding the fifth degree polyno-
mial defined by the coefficients you found in i.e. ps(z) = ag + arx + ... asx>.

(b) Note that the interpolating polynomial is defined at infinitely many points x. To get
a good view of it you will need to create a linearly spaced vector x with a 100 or so
points. You can do this in MATLAB with linspace(min(xdata) ,max(xdata),100);
where xdata are the x values of the data points.

(¢) Try using the MATLAB function polyval to create ps(x) rather than typing it out your-
self. Type >> help polyval at the MATLAB prompt to learn how to use the function, or
Google it.

Be prepared to discuss: (1) the difference between plotting the data points and the polynomial
(2) how you chose the x-values in your plot, (3) how plotting helps you see if you have the
right answer or not (4) how the coefficients a; are arranged in the Vandermonde matrix and
polyval and (5) any error messages you got from MATLAB.

. Download the file lagrange.m into the directory where you are running MATLAB. You will

use this function to find the same ps(x) as in [2a] but use Lagrange interpolation so that it
will be in the form ps(z) = y1li(z) + yola(z) + ... + ysle(x). The inputs into the function
lagrange(xdata,x,j) are (i) xdata - the x values of the data points, (ii) x - the linearly
spaced vector of 100 or so x values and (iii) j, the jth polynomial I;(z).

(a) Use lagrange.m to find l4(z) and plot it.

(b) Use lagrange.m to find lo(x) and plot it on the same graph as l4(z). Use a legend and
upload your plot in pdf, jpg or png format into Blackboard. Do not upload a file in .fig
format.

(c) Write a loop that finds all six /;(z) and sums them up to form ps(z) which is called px
in this code segment:

px = 0;
for j = 1:6

px = px + lagrange(xdata,x,j)*y(j);
end

51

where y(j) are the total population data points.
(d) Plot the data with points and the interpolating polynomial with a line.

Be prepared to discuss: (1) What the graph of lo(x) and I4(z) as compared to the graph
of ps(x), (2) how the number of data points relates to the degree and number of Lagrange
polynomials, (3) issues with writing a loop that calls lagrange.m many times and (4) any
issues you had with plotting the data points and fitted polynomial.

Part 2

1. The dataset in the file air_data_day.txt available in Blackboard contains the hourly concentra-
tion of PM2.5 in micrograms per cubic meter for a particular measuring station in Salt Lake
County for the first day of 2016. PM2.5 is the concentration in the air of fine particulates.
The Environmental Protection Agency (EPA) set the threshold the of 35 micrograms per
cubic meter, which corresponds to an Air Quality Index (AQI) of 101. If the concentration
of PM2.5 exceeds this threshold the air is considered unhealthy for sensitive individuals or
populations.

(a) Load the dataset into MATLAB and plot the data.

(b) Use Lagrange interpolation to find and plot the interpolating polynomial. Use a legend
and upload your plot of the data and interpolating polynomial in pdf, jpg or png format
into Blackboard. Do not upload a file in fig format.

Be prepared to discuss: (1) When looking at the plot of just the data, identify a function(s)
that would model the data well, (2) the order of the polynomial that interpolates the data in
air_data_day.txt (3) the reliability of your interpolating polynomial, i.e. if it is reliable, why?
If it is not reliable, why not?

2. Your plot in[Ih|should show Runge phenomenon. Interpolation at the Chebyshev points would
fix this problem but data at these locations is not possible because the data is collected on
the hour, in even intervals. However, we can still get a better approximation if we only use
the data points that are close to the Chebyshev points.

(a) The following MATLAB code segment will find N points in the data that most closely
match measurements at the Chebyshev points and store them in (x_new,y_new). Note
that NV should be less than the number of data points in the original data set (x,y) which
lies on the interval x€[a,b].

x_cheb = (a+b)/2 + (b-a)/2xcos(pi/N*((1:N)-.5));
[minValue,closestIndex] = min(abs(bsxfun(@minus,x_cheb, x’)));
x_new=x(closestIndex);

y_new=y(closestIndex);

Find the set of 5, 10, 15, and 20 points that most closely match data at the Chebyshev
points. Identify if data points are repeated in any of the sets. Recall from the lab the
formulae for Lagrange interpolation and be prepared to discuss what happens when you
use a data set that has repeated data points.

(b) Find the interpolating polynomial at the N = 5,10, 15,20 data points you found in
Plot the polynomials along with the original data set. Use a legend and upload your plot
of the data and interpolating polynomials in pdf, jpg or png format into Blackboard.

52

Do not upload a file in fig format. Be prepared to discuss which polynomial you think
best approximates the data and why. Consider both how well the polynonmial you
recommend represents the data and also how well it can predict future air quality.

(¢) You'll notice that your polynomial in [2b|does not go through all of the data points. This
means that there are errors, or residuals, at the data points.

i.

ii.

iii.

v.

Evaluate the polynomial interpolant at all data points. You can do this in MATLAB

with the following code segment
px_data = 0;
for j = I:N

px_data = px_data + lagrange(x_new,xdata,j)*y_new(j);
end

where (x_new,y new) are the N points that most closely match Chebyshev points

and xdata are the original data points. The value of the polynomial interpolant at

all data points is stored in px_data.

Use your values of the polynomial interpolant at all data points to find and plot the

error, or residuals at all the data points when N = 20.

Use the MATLAB function subplot to plot the error for all values of N
subplot(2,2,1),plot(xdata,resid_5),title((N=5")
subplot(2,2,2),plot(xdata,resid_10),title('N=10")
subplot(2,2,3),plot(xdata,resid_15),title'N=15")
subplot(2,2,4),plot(xdata,resid_20),title('N=20")

Upload your figure into Blackboard.

Write MATLAB functions that calculates the variance in the residual as we did

for linear regression. The function should takes in the original values of the data

points (y) and the value of the interpolating polynomial at the times the data were

collected (x).
function sigma2= var_resid(ydata,px_data)

Use this functions to find the variance in the residual with N = 5,10,15,20 data
points.

93

Chapter 9

Curve Fitting

9.1 Introduction

Curve fitting is closely related to interpolation. Both are used to study how well a specific experi-
ment’s data is consistent with conventional ideas about the phenomena. For example, population
growth often occurs exponentially. The process of interpolation or curve fitting involves using data
to find coefficients or parameters in the model that describes our pre-conceived notion about the
how the observed phenomena is expected to behave.

Curve fitting and interpolation differ in that interpolation is used to get an exact fit to data
points while curve fitting typically only approximately matches the data. Recall for interpolation
we find a unique polynomial of degree n given n + 1 data points. If the the data set is large we can
find a polynomial that fits a subset of the data. Curve fitting on the other hand, may produce a
curve that doesn’t fit any of the data.

9.2 Least squares curve fitting

The most common way to find coefficients or parameters in a mathematical model it to use the least
squares method that minimizes the distance between the data and curve. Let’s begin curve fitting
with fitting the Billing’s, MT census data to a polynomial. The (x,y) data points for the hispanic
population are (1980, 781), (1990, 871), (2000, 1257), (2010, 1835). If we chose to interpolate all
of the data the result would be a cubic polynomial (why?).

9.2.1 Quadratic curve

Rather than interpolate the census data, let’s fit it to the quadratic polynomial

y(x) = co + e + e’

o4

This results in the non-square system of equations

781 1 1980 19802
871 | | 1 1990 19902 | | ©
1257 | | 1 2000 20002 “
1835 1 2100 21002 €2
or
y = Ac.

There are not a unique coeflicients cg, c1, co that satisfy this system of equation because there are
more equations than unknowns. Instead let’s find a set of coefficients ¢ and form

i(x) = c(1) + ¢(2)x + ¢(3)z? (9.1)
so that §(z;) ~ y;. This means there will be residuals or errors in our quadratic polynomial.

In least squares curve fitting we find coefficients ¢ that minimize the sum of squared errors or

residuals
n

S=>> (yi —§x))>

i=1
The coefficients in ¢ that minimize S are given by
c=(ATA) ATy, (9.2)
With most software packages you will get a more accurate answer if you find ¢ by solving the
system of equations AT Ac = ATy rather than computing (A7 A)~! and using it to find c.

Here is a plot of the data, the 3rd degree interpolating polynomial, and the curve that results
when the data are fit to the quadratic polynomial (9.1)):

2000 Hlspanlf: Populatl‘on in Bllllpgs, MT

--—- Quadratic fit
1800 - — Interpolation

1600

Population
a a
N B
o o
o o

1000

8004

600 L L L L L
1980 1985 1990 1995 2000 2005 2010
Year

The graph shows that there is not a significant difference between the cubic and quadratic polyno-
mial models. We can find when they differ the most, and the corresponding predictions with the
following commands:

[maxValue,maxIndex] = max(abs(yhat-px));

95

year=xs(maxIndex)*10+41960;
quad_est=yhat(maxIndex);
interp_est=px(maxIndex);

Note that values of the quadratic polynomial are located in yhat, the cubic interpolating polynomial
is px, and each polynomial is evaluated at xs € [2,5]. The result of the commands are year = 1987,
quad_est = 827.74 and interp_est = 808.19. Based on these values we conclude that the year the
models differ the most is in 1987 when the quadratic curve fit predicts there were 828 hispanic
people and the cubic interpolant predicts 808 people.

9.2.2 Exponential curve

Since we are dealing with population data, let’s look at fitting the data to an exponential curve.
Define the curve as
y(x) = co + cre”.

Assume that we have transformed the years in the census data points so that they are (2, 781), (3,
871), (4, 1257), (5, 1835). When we fit these data to the exponential curve we get the non-square
system of equations

781 1 e?
871 | |1 € co
1257 1 et a |’
1835 1 €
This can also be written as a matrix system,
y = Acce

where the data vector y stayed the same as when we fit the data to a quadratic, but the matrix
and corresponding coefficient vector changed because we changed the model to an exponential one.

We solve the system AZAece = AeTy for the coefficients c. and then form the model
Je() = ce(1) + ce(2)e”. (9.3)

Lastly, evaluate .(x) at a large number of values for z to get an idea of how well your model fits
the data. Here is a plot of the data, the 3rd degree interpolating polynomial, and the curve that
results when the data are fit to the exponential model ({9.3)):

96

2000 Hlspanlf: Populatl‘on in Bllllpgs, MT

--—- Exponential fit
— Interpolation 4

1800 -

1600

Population
a a
N B
o o
o o

1000

8004

600 L L L L L
1980 1985 1990 1995 2000 2005 2010
Year

Just by looking at the graph, it appears the exponential model (9.3)) is the worse model for the
hispanic population data, as compared to interpolation and the quadratic curve. This is because
it does the worst job representing the data.

9.3 Rank and Pseudoinverse

The conditioning of the matrix A” A determines the stability of our fit to the curve §(z) or ge(z).
A problem is unstable if we change the data slightly and get a drastically different result for the
coefficients c¢. As we saw with interpolation it is best to transform the Census data years to smaller
numbers by (z — 1960)/10 so that for the hispanic population, we have = € [2,5]. However, it is
not always possible to transform the data to create a better conditioned matrix AT A.

We cannot create a better conditioned matrix by transforming the data when A is not full rank.
The rank of a matrix is the size of the largest collection of linearly independent columns or rows of
A. Columns or rows are linearly independent if none of them can be written as a linear combination
of the others. Unfortunately many problems in real applications result in a rank deficient matrix
because the model is not compatible with the data, or because there is not enough data to resolve
the model. You can find the rank of a matrix in MATLAB by typing rank(A). If A € R™*™ a full
rank matrix has rank = min(m,n), which means the matrix AT A is well-conditioned.

When A is not full rank we use the pseudoinverse to find the least squares estimate. A true
inverse matrix satisfies AA~' = A7!A = I. The pseudoinverse A' satisfies AATA = A In
MATLAB we can find the least squares solution with the pinv command

c=pinv(A)*y

This function works both when A is full rank, and when it is not.

o7

9.4 Epidemic Modeling

An epidemic model characterizes the spread of an infectious or contagious illness through a popu-
lation. It requires parameters such as the current number of infected people and the probability a
person will become infected. Data are used to identify these parameters and then the model can
be used to understand the effect of different interventions, such as vaccinations. These results are
often used to inform public health intervention decisions.

For the remainder of this section we make the following assumptions

e The number of infectious people at the start of day ¢ is denoted by I(t).
e The total population is denoted by N and we assume it is constant for all time.
e Once a person is infected they become infectious and stay infectious forever.

e If a person is infectious, they are equally likely with probability p to infect each noninfectious
person on a given day.

9.4.1 Stochastic Modeling

Before using data to find parameters, let’s assume we know the parameters and simulate how an
illness spreads through a population. Let z,(t) be the infectious status of person n at the start of
day t:

en(t) = 1 if infectious
MY 0 if not infectious

This means I(t) = Y0 2, ().

Let’s build a stochastic model by assuming that the probability p a person becomes infected is
known. Here is pseudocode to calculate the infectious status of the whole population over the time
period t =1,...,T.

for t=1:T-1
for i=1:N
x(i,t+1)=x(i,t); % Initialize infection status to be same as previous day
for j=1:N
find myrand % Randomly choose a number between 0 and 1
if myrand < p and x(j,t)=1
x(i,t+1)=1 % Person i is infected by person j
end
end
end
end

We view results from the stochastic simulation by plotting the number of infected people I(t)
over time t. Here are results of the first 100 days with p = 1074, a total population N = 1000, and
an initial infected population of 10.

o8

: o _a0-4
1000 Stochas‘tlc model mth p=10

900 -

800

700

600 -

i)

500

400 -

300 -

200 -

100 -

100

Dayt

9.4.2 Deterministic Modeling

Each time we run the stochastic model we will get a different curve. That is because myrand is
randomly chosen and we get a different value for it each time it is chosen. Rather than randomly
choose if a person is infected, we can calculate the expected number of people infected on a day t.
This results in the following deterministic model:

I(t+1) = I(t) + pI(t) (N — I(t)) (9.4)

For these models, given I(1) we can compute I(2), 1(3),...

The deterministic models are much more efficient to compute than the stochastic models and
their predictions may be just as reasonable. The advantage of the stochastic model is that it can
give some idea of the uncertainty of its predictions via multiple simulations.

We view results from the deterministic model simulation by plotting the number of infected
people I(t) over time t. Here are results of the first 100 days with p = 10~%, a total population
N = 1000, and an initial infected population of 10.

L a4
1000 Deter i model th p=10

900

800

700

600 -

i)

500 -

400 -

300 -

200 -

100 -

0

0 20 40 60 80 100
Dayt

This graph looks nearly identical to that created by the stochastic model. However, this curve is a
bit smoother.

99

9.4.3 Continuous time modeling

The epidemic models we have discussed so far are called discrete-time models. They are discrete
because time t takes on only integer values. Now we will approximate these models by continuous-
time processes.

Consider that I'(t) ~ w This means that |i can be approximated by
I'(t) = pI(t) (N — I(t)) (9.5)

We can solve this differential equation exactly

NIO

I(t) =
0= v (v~ 10y

(9.6)

where 10 is the initial population. I recommend differentiating and verifying yourself that

(19.5)) is true.

We view results from the continuous time model simulation by plotting the number of infected
people I(t) over time t. Here are results of the first 100 days with p = 10~%, a total population
N = 1000, and an initial infected population of 10 = 10.

: " i _a0-4
1000 ‘ Contmuou§ time model ywth p=10

900 -

800

700

600 -

i)

500

400 -

300 -

200 -

100

0

0 20 40 60 80 100
Dayt

This graph looks identical to the one created with the deterministic model.

9.4.4 Fitting the model to data

In Sections [9.4.1 we input parameters representing the total population N, probability an
infectious person will infect another person p and the initial number of infected people. Given
these parameters all three models produced similar predictions of how the epidemic will spread
over the next 100 days. Now we will address the situation where we want to use data to find values
for these parameters.

Given a set of data points (¢;,1;), j = 1,...,n representing the number of infected people on a
specific day the goal is to find values for the parameters N, p and the number of people infected
initially. We could try different values of the parameters, simulate the model, and see if we can
find a set that produces a curve that looks like the data. While trying different values for the
parameters may be a good way to understand how an epidemic could propagate, this approach is

60

not very practical. This is because we may never find a curve that matches the data, or never be
sure if our curve is “close” enough to the data.

The most common way to find parameters using data is to use the same least squares curve
fitting from Section 2 and in the Regression lab. In the case of epidemic modeling, we want to
find parameters N, p and 10 (initial number of infected people) that minimize the sum of squared
errors or residuals

n
2
S = (I = I(t;))* (9.7)
j=1
We can do this for the deterministic and continuous time models. Note that there is no closed form
expression for I(¢) in the stochastic model. There are approaches to finding parameters using a

least squares fit when there is no closed form expression for the model, but we will not cover them
in this class.

Recall formula (9.2)) that gives parameters that minimize S. If we are to use formula (9.2) we
need to write (9.4 or as a matrix system like

I
I N
Al p |. (9.8)
: 10
I

For the deterministic model (9.4) we could write
I(t+1)—I(t) =pI(t) (N —I(t)) (9.9)

and use differences of data points for the left hand side of . However, the right-hand side of
can be written as a linear function of p or IV, but not both. It is also not clear how to find
10. If we let t; = 0 for the first data point, then we could let I; = I0. However, this might not be
the best choice of I0 in order to make the residuals I; — I(t;) small.

The problem is that we cannot find a matrix A for because the model is not linear in the
parameters. This leaves us with two choices: re-formulate the problem so that it is linear or use
nonlinear least squares. We will explore both.

Linear deterministic model

Let’s assume we know the total population N and that the initial number of infected people is
given by the data I;. We will use data (t;,1;), j = 1,...,n to find p that minimizes .

Plugging data into gives the following system of equations

I — I L(N - 1)
I3 — 1o Iy(N — 1)
: - : [p })
In - Infl Infl(N - Infl)

Now we can use formula (9.2)), or more accurately solve the corresponding system of equations, to
find the single parameter p.

61

Given p we can use the deterministic model to predict the number of infected people. Once you
do this, graph the simulation along with the data to see how well your curve fits the data. Since
we used least squares to find the fit there’s a good chance your curve will not go through all of the
data points.

Linear continuous time model

Let’s assume we know the total population N, and we use data (t;,[;), j = 1,...,n to find the initial
number of infected people and p. We will make a transformation of variables to get a transformed
model that depends linearly on its parameters.

Let Z(t) = log(N/I(t) — 1), then the continuous time model becomes
Z(t) = Z0 — pNt. (9.10)

The model (9.10) depends linearly on pN and Z0. If we plug data into (9.10) we get

Al 1 —t
ZQ 1 —tg ZO

2 N [pN] '
In 1 —t,

There are a few things to keep track of with this transformation

e Begin the procedure by transforming the data (¢;, ;) to (t;, Z;) where Z; = log(N/I; — 1)

e The vector of solutions contains p/N so don’t forget to divide by N to get p.

N

e The vector of solutions contains Z0 so transform back to get the initial population: 10 = The0

Given p and I0 we can use the continuous time model to predict the number of infected people.
Once you have values for I(t), again graph them along with the data to see how well your curve
fits the data. Since we used least squares to find the fit there’s a good chance your curve will not
go through all of the data points.

Nonlinear least squares

Nonlinear least squares uses the same sum of squares in (9.7 to find parameters that best fit the
data. However, when I(t) is nonlinear in the parameters, we don’t have an analytical expression
for parameters that minimize the sum of squares, like ((9.2)).

Methods for finding parameters that minimize (9.7) in the nonlinear situation are beyond the
scope of this class. Instead we will use the MATLAB function Ilsqcurvefit. I recommend you read
the MATLAB documentation for it. This function requires the following inputs:

e An initial estimate for the parameters. Put the parameters in a vector ¢ = [10,p, N }T and
call initial estimates c0.

62

e The data, let’s call them (tdata, Idata).

e A function for I(t). For the deterministic model this would be

function Id = Idfun(c,t)
10=c(1); p=c(2); N=c(3);
T=t(end);
Id=zeros(T,1);1d(1)=I0;
for t=1:T-1
Id(t+1)=Id(t)+p*Id(t)*(N-Id(t));
end
end

For the continuous time model this would be

function Ic = Icfun(c,t)
10=c(1); p=c(2); N=c(3);
Ic=N*10./(10+(N-10)*exp(-p*N*t));
end

Pass the I(t) function into the lsqcurvefit function by using the function handle @ in the input
argument.

Given a set of data (tdata,Idata), the following MATLAB commands estimates the parameters
in a vector c.
c0 = [10, le-4, 1000];
¢ = Isqcurvefit(@Idfun, c0, tdata, Idata)
Similar commands can be given to find the parameters in the continuous time model.

Once you've found the parameters, plug them into the deterministic or continuous time model
to predict the number of infected people. When you graph your curve for I(t) along with the data
there’s still a chance your curve will not go through all of the data points.

9.5 Individual Lab questions

Please answer the following questions in Blackboard.

Part 1

1. Assume we fit the census data (2, 781), (3, 871), (4, 1257), (5, 1835) to the quadratic curve
y(z) = co + c1x + cax? by solving ATAc = ATy. Find ATA.

2. Assume we fit the census data (2, 781), (3, 871), (4, 1257), (5, 1835) to the exponential curve
curve y(x) = cg + c1e® by solving ATA.c. = Aly. Find ATA..

3. Assume we fit the census data of the hispanic population in Billings, MT to the quadratic
curve y(z) = co + c12 + co2? by solving ATAc = ATy. Use the quadratic curve to estimate
the population in 1987.

63

4. Assume we fit the census data of the hispanic population in Billings, MT to the exponential
curve y(z) = ¢o + c1e” by solving AgAece = Agy. Use the exponential curve to estimate
the population in 1987.

Part 2

1. For the stochastic model pseudocode on page 5, how would you specify the initial population
of 107

2. For the deterministic model in (9.4)), how would you specify the initial population 10 in your
code?

3. For the continuous time model in , how would you specify the initial population 107

Part 3

1. Assume we use data to estimate the parameter p in the linear deterministic model. The
formula for p follows (9.2) as described in Section For this situation, what is the
dimension of the matrix A in (9.2)?

2. If Z(t) =log(N/I(t) — 1) then what is I(t)?

3. When fitting the curve to data, what are the unknown parameters in the linear deterministic
model

4. When fitting the curve to data, what are the unknown parameters in the nonlinear determin-
istic model

5. When fitting the curve to data, what are the unknown parameters in the linear continuous
time model

6. When fitting the curve to data, what are the unknown parameters in the nonlinear continuous
model

9.6 Group Work

Part 1

1. Please write answers to the following questions on notecards.

(a) Data for the black population in Billings, MT is (1960, 187), (1970, 74), (1980, 121),
(1990, 159), (2000, 153), (2010, 326). Write the system of equations that results when

you fit the data to the quadratic polynomial y(z) = c + c17 + a2

(b) Data for the black population in Billings, MT is (1960, 187), (1970, 74), (1980, 121),
(1990, 159), (2000, 153), (2010, 326). Write the system of equations that results when
you fit the data to the exponential curve y(z) = ¢y + c1€”.

64

(c) Data for the black population in Billings, MT is (1960, 187), (1970, 74), (1980, 121),
(1990, 159), (2000, 153), (2010, 326). Write the system of equations that results when

you fit the data to the exponential curve y(z) = ¢o + c1e* + ¢ lf:x.

2. Consider the following integral

t
erf(t) = \/27?/0 e da.

It is called the error function and arises in the analytical solution of the heat equation, a
partial differential equation in physics. It can also be used to express the standard normal
distribution if we evaluate it at ¢/ /2 rather than t. There is no analytical solution for the
integral and people often use a table to look up values for it.

(a) Create a your own “table” of values by generating 11 data points yr = erf(t;) with
tp = (k—1)/10, k = 1,...,11. Use the MATLAB function erf to generate the data
points.

(b) Fit the data to a polynomial of degree 4:
pa(t) = co + et + eot? + 3t + eyt?,
i.e. find least squares estimates for ¢ by solving AT Ac = ATy. This means you need to

form the matrix A, data vector y, and use the backslash operator to solve for c.

(¢) Assume the MATLAB function erf finds the exact solution. Plot the error |p4(ts) — er f(ts)|
where ts =0:0.01: 1.

(d) Polynomials are not good basis function with which to approximate erf(¢). Using the
same data as in [2a], fit it to the curve

1

f(t) =co+ 6_t2(01 + oz + c32° + 6423)7 y = T

Similar to [2b] Form the matrix A, data vector y and use the backslash operator to solve
for c.

(e) Again assume the MATLAB function erf finds the exact solution. Plot the error
|f(ts) —erf(ts)| where ts =0:0.01: 1.

(f) Use your function f(t) to evaluate erf(.05).
Part 2

1. Implement the pseudocode on page 5.

(a) Things to think about: (i) Blackboard question 1. explains how to specify the initial
population, (ii) use the MATLAB function rand to find a scalar random number between
0 and 1 (iii) the if statement in the pseudo code has two conditions, use the & command
to make sure both are satisfied (iv) test the equality in the if statement using ==, not
= (v) use the sum command in MATLAB to find the total number of infected people.

(b) Run and graph multiple simulations on the same plot. Use the same values for p, N and
I(1) as in the lab.

(¢) Try different values for the number of people infected initially.

65

Be prepared to discuss (i) why do you get different graphs each time you run the stochastic
model, (ii) the magnitude of the difference between multiple simulation of the stochastic
model with the same parameters (iii) how the graph changes when you change the number
of people initially infected.

2. Implement the deterministic model in equation (9.4)) and plot the number of infected people
vs time. Use the same values for p, N and (1) as you did for the stochastic model.

Be prepared to discuss the complexity of the code and the amount of time it takes to compute
the stochastic model vs the deterministic model.

3. Implement the continuous time model in equation (9.4]) and plot the number of infected people
vs time. Use the same values for p, N and I(1) as you did for the deterministic and stochastic
model. Your plot should look the same as those for the stochastic and deterministic models.

Be prepared to discuss the differences between your deterministic model code and your code
for the continuous time model.

Part 3

1. Follow the instructions in the first part of the homework and load the monthly AIDS diagnoses
data for the Boston area into MATLAB. Here are some tips: Once you download the data from
the CDC I suggest first importing it into an Excel file and deleting all rows and columns that
don’t contain the number of infected people. Then use the MATLAB functions readtable and
table2array to put it in an array. Be prepared to discuss if these data satisfy our assumptions
for the model as described at the beginning of Section 4.

2. Use the MATLAB function cumsum to form a data vector I that contains the number of
infected people. Plot the data and be prepared to discuss how well it appears the epidemic
models we have been discussing are a good choice for this data set.

3. Use the deterministic model ({9.4)) to fit a curve to the data in the following manner:

(a) Identify values for the total population N and the initial number of infected people I0.
(b) Follow the instructions in 4.4.1 to estimate p. Be prepared to interpret your value for p.
(¢) Use your estimate of p and values for N and 10 you identified in [3a] to form the curve for

the deterministic model. Plot the curve and identify how well your curve fits the data.

4. Use the continuous time model and fit the curve to the data in the following manner:

(a) Form a function for the model that depends on NV, p, and I0.

(b) Read the documentation for the MATLAB function lsqgcurvefit. Identify the following
inputs: initial estimates of IV, p, and 10, data values for the independent variable ¢, data
values for the number of infected people.

(¢) Use Isqcurvefit to find estimates for N, p, and 10.

(d) Use your estimates of N, p, and I0 to form the continuous curve. Plot the curve and
identify how well your curve fits the data.

66

	Following Instructions
	Introduction
	Individual Lab
	Group work

	Loops and Conditional Statements
	Introduction
	Loops

	Individual Lab
	Group work

	Python and Jupyter Notebooks
	Introduction
	Jupyter Notebooks
	Python Syntax
	NumPy
	Plotting

	Individual Lab
	Group work

	Functions
	Introduction
	Anonymous Functions
	Functions in Python

	Individual Lab
	Group work

	Working with data files
	Introduction
	Reading and writing with Numpy
	Formatting
	Pandas

	Individual Lab
	Group work

	 Linear Regression
	Introduction
	Simple Linear Least Squares Regression
	Correlation Coefficient
	Multivariate Linear Least Squares Regression
	Matrices in Python
	Individual Lab
	Group Work

	 MATLAB
	Introduction
	Working with data in MATLAB

	Group work

	 Polynomial Interpolation
	Introduction
	Interpolation with the Vandermonde matrix
	Lagrange Interpolation
	Runge Phenomenon
	Splines
	Individual Lab
	Group Work

	 Curve Fitting
	Introduction
	Least squares curve fitting
	Quadratic curve
	Exponential curve

	Rank and Pseudoinverse
	Epidemic Modeling
	 Stochastic Modeling
	Deterministic Modeling
	Continuous time modeling
	Fitting the model to data

	Individual Lab questions
	Group Work

