
MATH 365
Functions

1 Introduction

In many cases, you will want to evaluate expressions multiple times using different values of the
variables. While you might be able to cut and paste the expressions multiple times, this is error
prone. It is much better to create a “function” that can be called multiple times using different
arguments.

For example from the Loops and Conditional Statements lab we could simplify the standard
deviation calculation

mu = 0
for i = 1:n

mu = mu + x(i)
end
mu = mu/n
s=0
for i = 1:n

s = s + (x(i)-mu)ˆ2
end
s = sqrt(s/(n-1))

Instead define

function mymean(x)
n=len(x)
mu = 0
for i = 1:n

mu = mu + x(i)
end
mu = mu/n

return mu
end

so that the standard deviation calculation becomes

mu=mymean(x)
s=0
for i = 1:n

s = s + (x(i)-mu)ˆ2
end
s = sqrt(s/(n-1))

Once a function is defined it can be used anywhere, including in other functions. For example,
we could also define a function for the standard deviation that uses the function we created for the
mean:

1

function mystd(x)
mu=mymean(x)
n=len(x)
s=0
for i = 1:n

s = s + (x(i)-mu)ˆ2
end
s = sqrt(s/(n-1))

return s
end

so that we only need to type

s=mystd(x)

to get the standard deviation.

You will notice that I did not call these functions mean and std. That is because many libraries
already have functions with those names and it can cause errors to use them in a different way.

Some programming languages make a distinction between “functions” that return values and
“subroutines” that do not return anything but rather do something like produce a plot. In Python
and MATLAB there is only one kind, functions, and they can return single, multiple, or no values
at all.

Argument variables within functions exist in their own namespace. This means that assignment
of an argument to a new value does not affect the original value outside of the function. For example
using the function mymean above if we type

mu=5
x=[1, 1, 1, 1]
xbar=mymean(x)
print(mu)

the answer will be 5, which has nothing to do with the mean of x. On the other hand, print(xbar)
will produce the mean of x which is equal to 1.

1.1 Anonymous Functions

Anonymous functions are in-line functions that can be generated on the fly to accomplish some
small task. You can assign them a name, but you don’t need to; hence, they are often called
anonymous functions. You may find them convenient to send a function like f(x) = cos(x) into a
named function. Most likely the named function will be the important part of the code while f(x)
just tests it. If you use an anonymous function for f(x) then you wont clutter your code with a lot
of one line statements.

1.2 Functions in Python

The function to calculate the average that we wrote in pseudocode in the previous section is written
in Python as

2

def mymean(x):
n=len(x)
mu = 0
for i in range(n):

mu = mu + x[i]
mu = mu/n
return mu

The return statement causes a function, loop or conditional to exit or terminate immediately,
even if it is not the last statement of the function, loop or conditional. The return statement also
identifies what variables should be passed out. If no return statement is present within a function,
or if the return statement is used without a return value, Python automatically returns the special
value None when the function is called.

To return both the mean and the standard deviation, we would also create the function

def mystd(x):
mu=mymean(x)
n=len(x)
s=0
for i in range(n):

s = s + (x[i]-mu)**2
s = (s/(n-1))**(1/2)
return mu, s

and call it with

xbar, sigma = mystd(x)

Note that if we typed the statement

print(s)

we would get the error statement NameError: name ’s’ is not defined.

An anonymous function is also called a lambda expression so Python uses the general form

lambda arg1, arg2, ... : output

The arguments arg1, arg2, ... are inputs to a lambda, just as for a functions, and the output is an
expression using the arguments. For example, these two functions are equivalent in Python

def f(a, b):
return 3*a+b**2 g = lambda a, b : 3*a+b**2

i.e. f(a,b)=g(a,b).

3

2 Individual Lab

Please answer the following questions in Blackboard Part 1:

1. What value does this function return if you pass in 4?

function fact(N)
var =1
while N > 0

var = var*N
N = N-1

end
return var

end

2. What value does this function return if you run mystery(2,5)?

def mystery(X, Y):
if X = Y :

return X*Y
if X > Y:

return X - Y
else:

return Y - X

3. What statement will correctly find the slope of the line passing through the points (1,-2) and
(-1,2)?

def myslope(x1,x2,y1,y2):
slope=(y2-y1)/(x2-x1)
return slope

4. Define the functions

def fun f(x):
fun=np.cos(x)
return fun

def fun g(x):
fun=x**2
return fun

and identify how to evaluate cos(x2), (cos(x))2, x2 cos(x) and x2 + cos(x).

5. Review Netwon’s method from Calculus I: http://tutorial.math.lamar.edu/Classes/

CalcI/NewtonsMethod.aspx and answer the question in Blackboard.

6. Review Taylor series from Calculus II: http://tutorial.math.lamar.edu/Classes/CalcII/
TaylorSeries.aspx and answer the question in Blackboard.

7. Review numerical integration from Calculus II: http://tutorial.math.lamar.edu/Classes/
CalcII/ApproximatingDefIntegrals.aspx and answer the question in Blackboard.

4

http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx
http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/TaylorSeries.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/TaylorSeries.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/ApproximatingDefIntegrals.aspx
http://tutorial.math.lamar.edu/Classes/CalcII/ApproximatingDefIntegrals.aspx

Part 2:

1. What is the nth degree Taylor series polynomial for ex?

2. Assume we want to find the roots of f(x) = x3 − 7x2 + 8x− 3. Start with an initial guess of
x0 = 5 and find the first estimate x1 using Newton’s method.

3. Approximate the derivative of f(x) = sin(x) at x = 1.0 with the formula f(x+h)−f(x)
h and a

step size h = 0.1.

4. Approximate
∫ 5
1

1
x3+1

dx with midpoint rule. Divide the interval into 4 subintervals of equal
length in your approximation.

3 Group work

1. Identify which function does (i) Netwon’s method, (ii) Taylor series, (iii) numerical differen-
tiation, or (iv) numerical integration. Please write your answer on the supplied note cards
e.g. func1 and Newton, func2 and Taylor, etc.

def func1(f, x, a,b,h):
x=np.arange(a,b,h)
g = (f(x+h) - f(x))/h
return g

def func2(n,x):
f = 0
for i in range(n):

f+= x**i/np.math.factorial(i)
return f

def func3(x, f, fprime, max iter, tol):
for i in range(max iter):

step = f(x)/fprime(x)
if abs(step) < tol:

return i, x
x -= step

return i, x

def func4(f,a,b,h):
sum = 0.0
x = a + h/2

while (x < b):
sum += h * f(x)
x += h

return sum

2. Please form a new group of 3-4 people. Each team will consist of:

• The manager, responsible for coordinating the work of the team. The manager is the
person who has the most siblings.

• The spokesperson, who will report your group’s work to the rest of the class. The
spokesperson is the person who has the shortest time to graduation.

• The scribe, who will be responsible for writing down your team’s findings. The scribe
is the person who has taken the most foreign language courses.

• The timekeeper, who will keep track of time for each exercise. The timekeeper is the
person who was not assigned a role already. In case of a three-person group, the manager
takes the role of a timekeeper.

5

One person should not have more than one role (except for the manager/timekeeper combo),
so if a person who already was assigned a task meets the criteria for another one, the person
who is next in line (i.e., second-longest commute) takes this role.

Each group will be assigned one method and the spokesperson will present their answers to
the following questions to the class.

(a) Newton’s method

i. Explain the inputs and outputs to the supplied function and their dimension e.g. a
scalar or a vector with specific dimension.

ii. Describe x and fprime in the supplied function and their role in Newton’s method.

iii. Describe the role of max iter and tol in the supplied function. Explain what happens
when they are adjusted.

iv. In the supplied function, there is an initial guess of the root, but it is implicitly
defined. Explain.

v. Give a specific example where you call the function and print or plot the output.

(b) Taylor series

i. Explain the inputs and outputs to the supplied function and their dimension e.g. a
scalar or a vector with specific dimension.

ii. Describe the role of n. Give an example to describe the effect of it being adjusted.

iii. If the supplied function can be used to find Taylor series of any mathematical func-
tion, give an example. If it can’t be used for any mathematical function, how would
you adjust the function to estimate the Taylor series for a different mathematical
function?

iv. Give a specific example where you call the function and print or plot the output.

(c) Numerical differentiation

i. Explain the inputs and outputs to the supplied function and their dimension e.g. a
scalar or a vector with specific dimension.

ii. What do a,b, and h represent? What is the effect of adjusting h?

iii. Give an example of how you would input a specific f.

iv. How could you change the differentiation function so that it takes data rather than
a function as input? What would be potential problems/errors?

v. Give a specific example where you call the function and print or plot the output.

(d) Numerical integration

i. Explain the inputs and outputs to the supplied function and their dimension e.g. a
scalar or a vector with specific dimension.

ii. Describe what happens in the supplied function when we input h<0.

iii. Explain why this is called the midpoint rule.

iv. Give a specific example where you call the function and print or plot the output.

6

	Introduction
	Anonymous Functions
	Functions in Python

	Individual Lab
	Group work

