Introduction

2019 RMMC Summer School Inverse Problems in Imaging

Jodi Mead Department of Mathematics

My background

- Professor of Mathematics, co-Director Computing PhD, Associate Dean in Residence Graduate College, Boise State U.
- PhD in Computational Math, Arizona State University, 1998
- Postdoc in Oceanography, Oregon State University
- Visiting faculty: Computer Science, Portland State U. and National Centre for Groundwater Research and Training, Adelaide Australia

Oceanographic float data in the North Atlantic

Assimilation Results from Experiment 1

Assimilation Results from Experiment 2

Atmospheric releases in an urban environment

- Chemical or biological agent released into atmosphere
 - Homeland security (bioterriosm)
 - Environmental monitoring (nuclear, pollution)
- Determine source location and emission rate or strength
- Simulate spatial and temporal evolution of contaminant

Fixed network of concentration measurements

Parameter estimates and their uncertainty

Hydrological Processes

Soil Moisture

- Can significantly impact weather patterns and precipitation.
- Controls whether precipitation absorbs into, runs off, or evaporates.

Dry Creek Watershed near Boise, ID

Dry Creek Watershed

- Established in 1999 to investigate hydrologic processes
- Semi-arid climate, open, dry land vegetation
- Typical of small watersheds in the Idaho Batholith

Measurements of Soil Moisture θ and Pressure Head ψ

Two approaches to measuring $\theta(\psi)$ at each soil pit:

Soil Moisture Estimates

Outline of lectures

- Recent work on near subsurface imaging
 - Full physics incorporated in inversion
 - Regularization informed by additional data
- Statistical aspects of inverse methods
 - Noise assumptions
 - Frequentist vs Bayesian
 - Uncertainty estimates
 - Regularization

