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Near subsurface imaging

Boise Hydrogeophysical Research Site (BHRS)

e Field laboratory on a gravel bar ad-
jacent to the Boise River, 15 km
southeast of downtown Boise.

e Consists of coarse cobble and sand.
Braided stream fluvial deposits over-
lie a clay layer at about 20 m depth.

Difference in retention properties in a lenticular sand feature yields significantly different
geophysical properties.




Electrical Resistivity Tomography (ERT)

e 2D grid of observations provides a
Seneel Inmetivey e 2.5-D inverted model that empha-
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sizes the sand lenticular feature.

e BHRS survey consisted of 12 elec-
trodes spaced 1 meter apart acquired
with a dipole-dipole configuration.

BHRS survey acquired at surface when subsurface achieved saturation.




Electrical Resistivity Model
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- electric potential

0- i - current intensity

s+ - source-sink position.

Model parameters: conductivity o or resistivity p = 1/0
Observed data: apparent resitivity %‘35

IPidlisecky and Knight, 2008




Ground Penetrating Radar (GPR)

e GPRsurvey at BHRS acquired across
center of gridded ER survey.

e GPR sampled line collinear with ER
survey.

e GPR derived boundary gives con-
straint for inverting the ER dataset.




GPR Model
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Ey-electric field, (H, H.) - magnetic field
po-constant permeability, J,-source

Model parameters: conductivity ¢ and permitivity €
Observed data:

electric current Mu




Complementary data in Subsurface Imaging

Ground Penetrating Radar

e High frequency

e Conductivity through
attenuation and reflection

shot gather with attenuation
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e Low frequency

e Directly sensitive to conductivity

wenner o,

n level
[S I N R R




GPR inversion
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Boise Hydrogeophysical Research Site Results
e ER data inverted for resistivity

e Regularization in the form of subsurface boundary constraint inferred from GPR
data

u- electric field y component in space and time, s,, - source term, M,, - operator
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Inverting ER and GPR jointly - full physics

E=Ew +Ea
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Combining updates
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Data weights
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Inverted images - full physics
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Inverted cross section - full physics

cross section z = Im
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