Near Subsurface Imaging

2019 RMMC Summer School Inverse Problems in Imaging

> Jodi Mead Department of Mathematics

Near subsurface imaging

Boise Hydrogeophysical Research Site (BHRS)

- Field laboratory on a gravel bar adjacent to the Boise River, 15 km southeast of downtown Boise.
- Consists of coarse cobble and sand. Braided stream fluvial deposits overlie a clay layer at about 20 m depth.

Difference in retention properties in a lenticular sand feature yields significantly different geophysical properties.

Electrical Resistivity Tomography (ERT)

- 2D grid of observations provides a 2.5-D inverted model that emphasizes the sand lenticular feature.
- BHRS survey consisted of 12 electrodes spaced 1 meter apart acquired with a dipole-dipole configuration.

BHRS survey acquired at surface when subsurface achieved saturation.

Electrical Resistivity Model

$$-\nabla \cdot \sigma \nabla \varphi = \mathbf{i} (\delta(x - s_+) - \delta(x - s_-))^1$$

arphi - electric potential **i** - current intensity s_{\pm} - source-sink position.

Model parameters:conductivity σ or resistivity $\rho = 1/\sigma$ Observed data:apparent resitivity $\frac{2\pi \bigtriangleup \varphi}{i} \kappa$

¹Pidlisecky and Knight, 2008

Ground Penetrating Radar (GPR)

- GPR survey at BHRS acquired across center of gridded ER survey.
- GPR sampled line collinear with ER survey.
- GPR derived boundary gives constraint for inverting the ER dataset.

GPR Model

$$\begin{pmatrix} \mu_o & 0 & 0\\ 0 & \mu_o & 0\\ 0 & 0 & \varepsilon \end{pmatrix} \begin{pmatrix} \dot{H}_z\\ -\dot{H}_x\\ \dot{E}_y \end{pmatrix} = \begin{pmatrix} 0 & 0 & \partial_x\\ 0 & 0 & \partial_z\\ \partial_x & \partial_z & 0 \end{pmatrix} \begin{pmatrix} H_z \\ -H_x\\ E_y \end{pmatrix}$$

$$\sigma \begin{pmatrix} 0\\ 0\\ E_y \end{pmatrix} + \begin{pmatrix} 0\\ 0\\ -J_y \end{pmatrix},$$

 E_y -electric field, (H_x, H_z) - magnetic field μ_0 -constant permeability, J_z -source

Model parameters:conductivity σ and permitivity ϵ Observed data:electric current Mu

Complementary data in Subsurface Imaging

Ground Penetrating Radar

- High frequency
- Conductivity through attenuation and reflection

Electrical Resistivity

- Low frequency
- Directly sensitive to conductivity

GPR inversion

$$\begin{split} \mathbf{u} &= \mathbf{L}_w \, \mathbf{s}_w, \\ \mathbf{d}_w^s &= \mathbf{M}_w \, \mathbf{u} \\ \min_{\varepsilon, \boldsymbol{\sigma}} \frac{1}{2} \left(E_{w, \varepsilon}(\varepsilon; \, \mathbf{d}_w^o) + E_{w, \boldsymbol{\sigma}}(\boldsymbol{\sigma}; \, \mathbf{d}_w^o) \right), \quad E_{w, \varepsilon} = \frac{1}{n_s} \sum_s E_{w, \varepsilon}^s, \quad E_{w, \varepsilon}^s = \frac{||\mathbf{e}_w||_2^2}{||\mathbf{d}_w^{o, s}||_2^2} \end{split}$$

ER inversion

$$\mathbf{L}_{dc}\boldsymbol{\varphi} = \mathbf{s}_{dc},$$
$$\mathbf{d}_{dc}^{s} = \mathbf{M}_{dc}\boldsymbol{\varphi},$$
$$\min_{\boldsymbol{\sigma}} E_{dc}(\boldsymbol{\sigma}; \mathbf{d}_{dc}^{o}), \quad E_{dc} = \frac{1}{n_s} \sum_{s} E_{dc}^{s}, \quad E_{dc}^{s} = \frac{||\mathbf{e}_{dc}||_2^2}{||\mathbf{d}_{dc}^{o,s}||_2^2}$$

Boise Hydrogeophysical Research Site Results

- ER data inverted for resistivity
- Regularization in the form of subsurface boundary constraint inferred from GPR data

Inverting ER and GPR jointly - full physics

man and the state of the second se

$E=E_w+E_{dc}$

$$\varepsilon \leftarrow \varepsilon + \Delta \varepsilon$$

$$\sigma \leftarrow \sigma + \alpha \left(b_w \Delta \sigma_w + b_{dc} \Delta \sigma_{dc} \right)$$

Combining updates

Data weights

Inverted cross section - full physics

all so the south second in the

