
Data Assimilation and Climate
AIMS Rwanda, April, 2020

Final Quiz

1. Let Y = Hx+ε with ε ∼ N (0,Cε). Assume that Y is stochastic and that x is not stochastic.
If we make the estimate X̂ = (HTC−1ε H)−1HTC−1ε Y, what is the expected value E[X̂]?

2. Assume we want to estimate a scalar state variable X, which could represent a temperature
or a wind velocity component. Consider the data model

Y = X + ε

where the conditional distribution of the data given the state is Y |X ∼ N (X,σ2y).

(a) Given a single observation y1 of x, what is the conditional probability density function
fY |X(y1|x)?

(b) Assume that we are given m independent observations y = (y1, y2, . . . , ym)T of the scalar
variable x

i. Find the conditional probability distribution function fY|X(y1, y2, . . . , ym|x)

ii. AssumeX has prior distributionX ∼ N (µ, σ2x). Use Bayes law to find a proportional
(∝) posterior probability distribution fX|Y(x|y1, y2, . . . , ym).

iii. Completing the square in the posterior distribution found in ?? gives

fX|Y(x|y1, y2, . . . , ym) ∝ exp

−1

2

(
x− (n/σ2y + 1/σ2x)−1

(
m∑
i=1

yi/σ
2
y + µ/σ2x

))2 (
n/σ2y + 1/σ2x

)
Find constants c1 and c2 so that that the mean of the posterior distribution is

c1y + c2µ,

where y = 1
m

∑m
i=1 yi.

iv. Discuss how the weights combine the prior mean and average of the data to form
the posterior estimate. Also what happens when (a) there is large uncertainty in the
prior, (b) a large number of observations, and (c) a small number of observations.

3. Consider the process and data models

X(i) = MiX(i− 1) + δi i = 1, . . . , N

Y(i) = HiX(i) + εi, i = 1, . . . , N

with X(0) ∼ N (µ,Σ), εi ∼ N (0,Ri), δi ∼ N (0,Qi), and recall the Kalman filter

µi|i−1 = Miµi−1|i−1

Σi|i−1 = Qi + MiΣi−1|i−1M
T
i

Ki = Σi|i−1H
T
i

(
HT
i Σi|i−1Hi + Ri

)−1
µi|i = µi|i−1 + Ki

(
y(i)−Hiµi|i−1

)
Σi|i = (I−KiHi) Σi|i−1
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for i = 1, . . . , N . Explain what happens the forecast and and filtered estimates, and their
uncertainties, when you apply the Kalman filter without any data, i.e. Hi = 0. Also discuss
the forecast, for example, when you run a climate model where observations are obtained
every 6 hours and you run the assimilation for 6 hours without any data.

4. Programming
Recall the 3DVar cost function

J (x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
(Hx− y)TR−1(Hx− y),

with state estimate x̂ = xb + K
(
y −Hxb

)
, K = BHT

(
HBHT + R

)−1
.

(a) We seek two temperatures, x1 and x2, in London and Paris. The climatologist gives us
an initial guess (based on climate records) of xb = (10, 5)T , with background error

B =

(
1 0.25

0.25 1

)
.

We observe y = (4◦) in Paris with an error variance R = (0.25), but do not have
an observation for London. This means that H = (0, 1). Use 3DVar to find an optimal
estimate of the temperatures in London and Paris, given the background and observation
with errors.

(b) We seek monthly rainfall estimates in Kigali. The climatologist gives us initial guesses
based on climate records of average monthly rainfall in Table 1 below. Table 1 also
contains observations of average monthly rainfall recorded at the airport in 2019.

i. Assume that the background error variance is 0.1mm for all months, and the obser-
vation error variance is 0.25mm for all months. Use 3DVar to find optimal estimates
of monthly rainfall in 2019. Plot your optimal estimates, together with the data and
background as points. Use a legend for your plot and describe how the estimates
compare with the background and data.

ii. Assume that the background error variance is 0.25mm for all months, and the
observation error variance remains at 0.25mm for all months. Plot optimal estimates
of monthly rainfall in 2019, together with the data and background. Describe how
the estimates compare with the background and data.

iii. Assume that there are no observations for July and August, and that the background
and observation error variances are still 0.25mm for all months. Adjust H to reflect
that there are no observations in July and August. Plot optimal estimates of monthly
rainfall in 2019, together with the data and background. Describe how the estimates
compare with the background and data.
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Month Background Observations

January 76.9 80

February 91 90

March 114.2 110

April 154.2 160

May 88.1 80

June 18.6 20

July 11.4 10

August 31.1 40

September 69.6 70

October 105.7 100

November 112.7 110

December 77.4 80

Table 1: Average monthly rainfall in Kigali (mm)
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