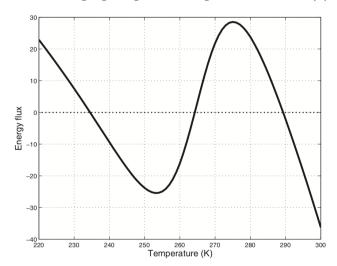
Quiz 1
Introduction to Data Assimilation and Calculus of Variation

1. Consider the zero-dimensional energy balance model

$$C_p \frac{\partial T}{\partial t} = S(1 - \alpha) - 4\epsilon \sigma T^4 \tag{1}$$

with S solar energy, α reflectivity of Earth System, ϵ infrared transmissivity, σ relates temperature to radiant emission, C_p specific heat capacity of earth system and T global mean surface temperature.

- (a) Use forward differences $\frac{\partial T}{\partial t} \approx \frac{T(t_{j+1}) T(t_j)}{dt}$ to approximate the derivate and assume that $dt = C_p$. Solve for $T(t_{j+1})$.
- (b) The following figure gives the right hand side of (1)



If the initial temperature $T(t_1) = 240K$, estimate $T(t_2)$.

2. Consider a physical process in which real-valued state vables x_i , i=1,2,..., are generated according to the rule $x_{i+1}=f(x_i)$, where f is a given real-valued function. The states are observed according to the data model $y_i=x_i+\epsilon_i$, where the ϵ_i are independent random variables.

Assume that observations $y_1, y_2, ..., y_N$ are available and that you want to estimate x_1 . Describe in general terms how a cost function should be set up whose minimum is expected to give an estimate for x_1 .