Data Assimilation and Climate AIMS Rwanda, March, 2020

Make-up quiz 3DVar

Consider the cost function

$$\mathcal{J}(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b) + \frac{1}{2}(\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1}(\mathbf{H}\mathbf{x} - \mathbf{y}),$$

where \mathbf{x}^b is the background state and \mathbf{y} contains the observations, while

$$\mathbf{x} = \mathbf{x}^b + \boldsymbol{\eta}$$
 $\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\epsilon}$

with $\eta \sim \mathcal{N}(0, \mathbf{B})$ and $\epsilon \sim \mathcal{N}(0, \mathbf{R})$. Assume that \mathbf{x} and \mathbf{y} are random variables, and that \mathbf{x}^b is not a random variable.

- 1. Let the innovation term be denoted by $\mathbf{h} = \mathbf{H}\mathbf{x}^b \mathbf{y}$.
 - (a) Show that $\mathcal{J}(\mathbf{x}^b) = \frac{1}{2}\mathbf{h}^T\mathbf{R}^{-1}\mathbf{h}$.
 - (b) Show that $\mathbb{E}[\mathbf{h}] = \mathbf{0}$
- 2. Recall that the minimum of the cost function occurs at $\hat{\mathbf{x}} = \mathbf{x}^b + \mathbf{K} (\mathbf{y} \mathbf{H}\mathbf{x}^b)$, where $\mathbf{K} = \mathbf{B}\mathbf{H}^T (\mathbf{H}\mathbf{B}\mathbf{H}^T + \mathbf{R})^{-1}$. Show that $\mathbb{E}[\hat{\mathbf{x}}] = \mathbf{x}^b$.