
Outline of course

• Introduction to Data Assimilation

• Bayesian Data Assimilation

• Sequential Data Assimilation

– Ensemble Kalman Filter

• Variational Data Assimilation

– 3DVar and 4DVar
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What is Data Assimilation (and why do we need it?)

• General circulation patterns are largely responsible for large-scale cli-

mate variations

– This includes the positions of storm tracks, prevailing wind di-

rections, monsoonal circulations, and other defining features of a

region’s climate

– These patterns occur at scales large enough to be adequately re-

flected in the station data

– These patterns are not explicitly accounted for by interpolation

methods.

• Climate models predict how average conditions will change in a region

over the coming decades.

– Includes atmospheric, oceanic and land processes

– Typically defined by partial differential equations discretized at

thousands of data points

– Simulate the transfer of energy and water that takes place in cli-

mate systems.

• Spatial and temporal climate data are often key drivers of computer

models and statistical analyses

– These analyses form the basis for scientific conclusions, manage-

ment decisions, and other important outcomes.
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• Complete data defining all of the states of a system at a specific time

are, however, rarely available.

• Both the models and the available initial data contain inaccuracies and

random noise that can lead to significant differences between the pre-

dicted states and the actual states of the system.

Data Assimilation: Observations of the system over time can be

incorporated into the model equations to derive ‘improved’ estimates of the

states and also to provide information about the ‘uncertainty’ in the

estimates.

Note: The problem of state-estimation is an inverse problem, however,

traditional control techniques are not practicable and ‘data assimilation’

schemes have been developed to generate accurate state-estimates.
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Data Assimilation Schemes

• Bayesian - maximum likelihood estimation and Bayes rule

• Sequential data assimilation: there is a ‘dynamic observer,’

– Observations are ‘fed-back’ into the model at each time they are

available, and a best estimate is produced that is used to predict

future states.

• Variational data assimilation: there is a ‘direct observer,’

– A feasible state trajectory is found that best fits the observed data

over a time window, and the estimated states at the end of the

window are used to produce the next forecast.

Note: Under certain mathematical assumptions, these approaches solve

the same ‘optimal’ state-estimation problem
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Climate Models

1. energy balance models (EBMs);

2. one dimensional radiative-convective models (RCMs);

3. two-dimensional statistical-dynamical models (SDMs);

4. three-dimensional general circulation models (GCMs).

We will focus on the mathematical concepts of Data Assimilation using ide-

alized models
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Data Assimilation and Climate

AIMS Rwanda, March, 2020

Climate Models

Zero-dimensional models

S(1 − α) = 4εσT 4

s- solar energy, α reflectivity of Earth System, ε - infrared transmissivity, σ-

relates temperature to radiant emission, T - global mean surface temperature.

Cp
∂T

∂t
= S(1 − α) − 4εσT 4

Cp - specific heat capacity of earth system.

Requires numerical methods, e.g.

∂T

∂t
≈ T (tj+1) − T (tj)

k

One-dimensional energy balance model

Cp
∂Tlat
∂t

= S(1 − α) − 4εσT 4
lat − k(Tlat − Tglobal)

i.e. Tlat = T (x) = T (x, t) so that we have

Cp
∂T (x, t)

∂t
= S(1 − α) − 4εσT 4(x, t) − k (T (x, t) − Tglobal(t))

This model requires an initial condition

You can see from the above example that if you have good weather sta-

tions spread uniformly across the planet (land and sea) and they have been
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recording continuously for a long time, then one can take the mean annual

temperature of each station and calculate a simple global average for each

year, and thus the history of temperature change for our planet. But, as

you might imagine, the stations are not uniformly distributed — they are

clustered in populated countries — and the number of stations declines as

you go backward in time, so the actual process of assembling an instrumental

record takes some care. The trick here is in how you combine the individual

temperature records to come up with a global average. This is complicated

by the fact that some weather stations may have problems related to things

like the ”urban heat island effect.” Man-made materials retain heat better

than open land and the lack of trees also amplifies warming in cities, which

are currently warming at double the rate of the global average! Thus, if

urban development encroaches on a weather station, the urban heat island

effect will make the local temperature rise for reasons that are unrelated to

any regional climate change. Researchers have found ways of ensuring that

this effect does not skew the results, and many different groups come up with

results that are nearly identical, giving us confidence that the data analysis

is sound.

It is interesting to see how similar the curves are given that they use

different strategies for averaging the data, and some of the records are based
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on slightly different sets of weather stations. In particular, note that none

of these estimates show a general cooling trend over this length of time —

they all show warming. Back in the 1800s, there were fewer weather stations,

and so it is more difficult to estimate global temperature back then (see

figure below), but it gets steadily better as time goes on, and for the last few

decades, we have excellent data due to the satellites that now circle the globe

taking temperature measurements of every spot on Earth (more on this in a

bit).
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