Data Assimilation and Climate AIMS Rwanda, April, 2020

Lecture Notes

Variational Data Assimilation

Variational assimilation is based on optimal control theory. The state is estimated by minimizing a cost function. Maximum Likelihood Estimation showed us that minimizing this cost function can be viewed as maximizing a probability density function. We will now consider **discrete** variational data assimilation.

Stationary case: 3DVar

Define the cost function

$$\mathcal{J}(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b) + \frac{1}{2}(\mathbf{H}\mathbf{x} - \mathbf{y})^T \mathbf{R}^{-1}(\mathbf{H}\mathbf{x} - \mathbf{y}),$$

where \mathbf{x} is the state in three dimensions, \mathbf{x}^b is the background state, and \mathbf{y} contains the observations. Assume that $\mathbf{x}, \mathbf{x}^b \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$.

Activity: Identify the dimensions of B, R and H.

1

If we consider

$$\mathbf{x} = \mathbf{x}^b + \boldsymbol{\eta}$$
 $\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\epsilon}$

Minimizing this cost function can be viewed as

- Minimizing the errors in the background state (η) and data (ϵ) in a weighted least squares sense, with weights **B** and **R**.
- Maximizing the pdf of the errors in the state and data, with $\eta \sim \mathcal{N}(0, \mathbf{B})$ and $\epsilon \sim \mathcal{N}(0, \mathbf{R})$

Activity: Show that the $\nabla \mathcal{J}(\mathbf{x}) = \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b) - \mathbf{H}^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x})$. Hint: $\nabla \left((\mathbf{x} - \mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b) \right) = 2\mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b)$.

Solution: Use the hint and take the gradient of the cost function term by term

Activity: Solve $\nabla \mathcal{J}(\hat{\mathbf{x}}) = \mathbf{0}$ for $\hat{\mathbf{x}}$, and show that

$$\hat{\mathbf{x}} = \left(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \left(\mathbf{B}^{-1} \mathbf{x}^b + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{y}\right)$$

Solution:

$$\mathbf{B}^{-1} \left(\hat{\mathbf{x}} - \mathbf{x}^b \right) = \mathbf{H}^T \mathbf{R}^{-1} \left(\mathbf{y} - \mathbf{H} \hat{\mathbf{x}} \right)$$
$$\left(\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} \right) \hat{\mathbf{x}} = \mathbf{B}^{-1} \mathbf{x}^b + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{y}$$

Re-writing $\hat{\mathbf{x}}$

$$\hat{\mathbf{x}} = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} ((\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}) \mathbf{x}^b - \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} \mathbf{x}^b + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{y})$$

$$= \mathbf{x}^b + (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H} \mathbf{x}^b)$$

$$= \mathbf{x}^b + \mathbf{K} (\mathbf{y} - \mathbf{H} \mathbf{x}^b)$$

Note that

$$\mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{H}^{T} = \mathbf{H}^{T}\mathbf{R}^{-1}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})$$

= $(\mathbf{B}^{-1} + \mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H})\mathbf{B}\mathbf{H}^{T}$

so we have
$$\mathbf{K} = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} = \mathbf{B} \mathbf{H}^T (\mathbf{H} \mathbf{B} \mathbf{H}^T + \mathbf{R})^{-1}$$
.

	Innovation	Gain
3DVar	$\mathbf{y} - \mathbf{H}\mathbf{x}^b$	$\mathbf{B}\mathbf{H}^T\left(\mathbf{H}\mathbf{B}\mathbf{H}^T+\mathbf{R} ight)^{-1}$
Kalman Filter	$igg \mathbf{y}(i) - \mathbf{H}_i oldsymbol{\mu}_{i i-1}$	$igg oldsymbol{\Sigma}_{i i-1}\mathbf{H}_i^Tig(\mathbf{H}_i^Toldsymbol{\Sigma}_{i i-1}\mathbf{H}_i+\mathbf{R}_iig)^{-1}igg $

Non-stationary case: 4DVar

$$\mathbf{x}(0) = \mathbf{x}^b + \boldsymbol{\eta}$$

$$\mathbf{y}(i) = \mathbf{H}_i \mathbf{x}(i) + \boldsymbol{\epsilon}_i$$

Strong contraint 4DVar

$$\mathbf{x}(i) = \mathbf{M}_i \mathbf{x}(i-1)$$

with cost function

$$\mathcal{J}(\mathbf{x}(0)) = \frac{1}{2}(\mathbf{x}(0) - \mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x}(0) - \mathbf{x}^b) + \frac{1}{2} \sum_{i=1}^{N} (\mathbf{H}_i \mathbf{x}(i) - \mathbf{y}(i))^T \mathbf{R}_i^{-1} (\mathbf{H}_i \mathbf{x}(i) - \mathbf{y}(i)).$$

Note that the given initial condition, $\mathbf{x}(0)$, defines a unique state, $\mathbf{x}(i)$, so both terms in the cost function depend on $\mathbf{x}(0)$.

Activity: Use the process model $\mathbf{x}(i) = \mathbf{M}_i \mathbf{x}(i-1)$ to find a formula for the state $\mathbf{x}(i)$ as a function of the initial condition $\mathbf{x}(0)$, for any (i).

Solution: $\mathbf{x}(1) = \mathbf{M}_1 \mathbf{x}(0), \mathbf{x}(2) = \mathbf{M}_2 \mathbf{M}_1 \mathbf{x}(0), \ldots \rightarrow \mathbf{x}(i) = \mathbf{M}_i \ldots \mathbf{M}_2 \mathbf{M}_1 \mathbf{x}(0).$

Activity: Write the cost function explicitly as a function of $\mathbf{x}(0)$.

Solution:

$$\mathcal{J}(\mathbf{x}(0)) = \frac{1}{2}(\mathbf{x}(0) - \mathbf{x}^b)^T \mathbf{B}^{-1}(\mathbf{x}(0) - \mathbf{x}^b)$$

$$+ \frac{1}{2} \sum_{i=1}^{N} (\mathbf{H}_i \mathbf{M}_i \dots \mathbf{M}_2 \mathbf{M}_1 \mathbf{x}(0) - \mathbf{y}(i))^T \mathbf{R}_i^{-1} (\mathbf{H}_i \mathbf{M}_i \dots \mathbf{M}_2 \mathbf{M}_1 \mathbf{x}(0) - \mathbf{y}(i)).$$

Weak contraint 4DVar

$$\mathbf{x}(0) = \mathbf{x}^b + \boldsymbol{\eta}$$

$$\mathbf{x}(i) = \mathbf{M}_i \mathbf{x}(i-1) + \boldsymbol{\delta}_i$$

$$\mathbf{y}(i) = \mathbf{H}_i \mathbf{x}(i) + \boldsymbol{\epsilon}_i$$

Define the cost function

$$\mathcal{J}(\mathbf{x}(0), \mathbf{x}(1), \dots, \mathbf{x}(N)) = \frac{1}{2} (\mathbf{x}(0) - \mathbf{x}^b)^T \mathbf{B}^{-1} (\mathbf{x}(0) - \mathbf{x}^b)$$

$$+ \frac{1}{2} \sum_{i=1}^{N} (\mathbf{H}_i \mathbf{x}(i) - \mathbf{y}(i))^T \mathbf{R}_i^{-1} (\mathbf{H}_i \mathbf{x}(i) - \mathbf{y}(i))$$

$$+ \frac{1}{2} \sum_{i=1}^{N} (\mathbf{x}(i) - \mathbf{M}_i \mathbf{x}(i-1))^T \mathbf{Q}_i^{-1} (\mathbf{x}(i) - \mathbf{M}_i \mathbf{x}(i-1))$$

State estimates from Variational Data Assimilation

• 3DVar

Solving $\nabla_{\mathbf{x}} \mathcal{J}(\mathbf{x}) = \mathbf{0}$ gives background state estimate $\hat{\mathbf{x}}$ found with formula.

• Strong constraint 4DVar

Solving $\nabla_{\mathbf{x}(0)} \mathcal{J}(\mathbf{x}(0)) = \mathbf{0}$ gives background state estimate $\hat{\mathbf{x}}(0)$ from which remaining states are estimated by $\hat{\mathbf{x}}(i) = \mathbf{M}_i \hat{\mathbf{x}}(i-1)$. The estimate $\hat{\mathbf{x}}(0)$ is typically found with *adjoint methods*.

• Weak constraint 4DVar

 $\nabla_{\mathbf{x}(0),\mathbf{x}(1),...,\mathbf{x}(N)} \mathcal{J}(\mathbf{x}(0),\mathbf{x}(1),...,\mathbf{x}(N)) = \mathbf{0}$ gives background state estimates $\hat{\mathbf{x}}(0),\hat{\mathbf{x}}(1),...,\hat{\mathbf{x}}(N)$. These estimates are typically found with adjoint methods.

Courtesy of Data assimilation: Methods, algorithms, and applications, fundamentals of algorithms., SIAM 2016