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Lecture Notes

Variational Data Assimilation

Variational assimilation is based on optimal control theory. The state is

estimated by minimizing a cost function. Maximum Likelihood Estimation

showed us that minimizing this cost function can be viewed as maximizing a

probability density function. We will now consider discrete variational data

assimilation.

Stationary case: 3DVar

Define the cost function

J (x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
(Hx− y)TR−1(Hx− y),

where x is the state in three dimensions, xb is the background state, and y

contains the observations. Assume that x,xb ∈ Rn and y ∈ Rm.

Activity: Identify the dimensions of B, R and H.
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If we consider

x = xb + η

y = Hx + ε

Minimizing this cost function can be viewed as

• Minimizing the errors in the background state (η) and data (ε) in a

weighted least squares sense, with weights B and R.

• Maximizing the pdf of the errors in the state and data, with η ∼

N (0,B) and ε ∼ N (0,R)
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Activity: Show that the ∇J (x) = B−1(x − xb) −HTR−1(y −Hx). Hint:

∇
(
(x− xb)TB−1(x− xb)

)
= 2B−1(x− xb).

Solution: Use the hint and take the gradient of the cost function term by

term

Activity: Solve ∇J (x̂) = 0 for x̂, and show that

x̂ =
(
B−1 + HTR−1H

)−1 (
B−1xb + HTR−1y

)
Solution:

B−1
(
x̂− xb

)
= HTR−1 (y −Hx̂)(

B−1 + HTR−1H
)

x̂ = B−1xb + HTR−1y
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Re-writing x̂

x̂ =
(
B−1 + HTR−1H

)−1 ((
B−1 + HTR−1H

)
xb −HTR−1Hxb + HTR−1y

)
= xb +

(
B−1 + HTR−1H

)−1
HTR−1

(
y −Hxb

)
= xb + K

(
y −Hxb

)
Note that

HTR−1HBHT + HT = HTR−1
(
HBHT + R

)
=
(
B−1 + HTR−1H

)
BHT

so we have K =
(
B−1 + HTR−1H

)−1
HTR−1 = BHT

(
HBHT + R

)−1
.

Innovation Gain

3DVar y −Hxb BHT
(
HBHT + R

)−1
Kalman Filter y(i)−Hiµi|i−1 Σi|i−1H

T
i

(
HT

i Σi|i−1Hi + Ri

)−1
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Non-stationary case: 4DVar

x(0) = xb + η

y(i) = Hix(i) + εi

Strong contraint 4DVar

x(i) = Mix(i− 1)

with cost function

J (x(0)) =
1

2
(x(0)−xb)TB−1(x(0)−xb)+

1

2

N∑
i=1

(Hix(i)−y(i))TR−1i (Hix(i)−y(i)).

Note that the given initial condition, x(0), defines a unique state, x(i), so

both terms in the cost function depend on x(0).
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Activity: Use the process model x(i) = Mix(i− 1) to find a formula for the

state x(i) as a function of the initial condition x(0), for any (i).

Solution: x(1) = M1x(0),x(2) = M2M1x(0), . . .→ x(i) = Mi . . .M2M1x(0).

Activity: Write the cost function explicitly as a function of x(0).

Solution:

J (x(0)) =
1

2
(x(0)− xb)TB−1(x(0)− xb)

+
1

2

N∑
i=1

(HiMi . . .M2M1x(0)− y(i))TR−1i (HiMi . . .M2M1x(0)− y(i)).
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Weak contraint 4DVar

x(0) = xb + η

x(i) = Mix(i− 1) + δi

y(i) = Hix(i) + εi

Define the cost function

J (x(0),x(1), . . . ,x(N)) =
1

2
(x(0)− xb)TB−1(x(0)− xb)

+
1

2

N∑
i=1

(Hix(i)− y(i))TR−1i (Hix(i)− y(i))

+
1

2

N∑
i=1

(x(i)−Mix(i− 1))TQ−1i (x(i)−Mix(i− 1))
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State estimates from Variational Data Assimilation

• 3DVar

Solving ∇xJ (x) = 0 gives background state estimate x̂ found with

formula.

• Strong constraint 4DVar

Solving ∇x(0)J (x(0)) = 0 gives background state estimate x̂(0) from

which remaining states are estimated by x̂(i) = Mix̂(i − 1). The esti-

mate x̂(0) is typically found with adjoint methods.

• Weak constraint 4DVar

∇x(0),x(1),...,x(N)J (x(0),x(1), . . . ,x(N)) = 0 gives background state es-

timates x̂(0), x̂(1), . . . , x̂(N). These estimates are typically found with

adjoint methods.
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Courtesy of Data assimilation: Methods, algorithms, and applications, fun-

damentals of algorithms., SIAM 2016
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