Data Assimilation and Climate
AIMS Rwanda, March, 2020

Lecture Notes

Kalman Filter

Kalman Filter

Apply the Bayesian method to a discrete time stochastic process model and

data model, with the following assumptions:

e The prior distribution on the state is normal.
e The process model is linear.

e The conditional distribution on the data given the state is normal, with

a mean that depends linearly on the state.

These assumptions result in a normally distributed posterior distribution
for the state given the data. We can use matrix manipulations to find its

mean and variance. This is the Kalman Filter.

Activities 1.



Let

X(i) = MX(i—1)+68 i=1,...,N

Y

with X(0) ~ N(u, X), € ~ N(0,R;), §; ~ N(0,Q)).

The Bayesian method applied to the discrete time process and data mod-

els, i.e. the Kalman Filter, gives:

Hiji—1 = Mi#z‘—l\i—l

Yii-1 = Qi+ Miziflﬁ—leT
K, = ¥, H (H'Z),_H + Rz’)_l
i = M1+ K (Y(Z) - Hz‘ﬂm—l)
X = (I-KH;) Xy,

forte=1,..., N and with K, the Kalman gain matrix.

We see in these formulas how as new data or measurements became avail-
able, we can easily update the previous optimal estimates without having to

recompute everything.



Forecasting, Filtering and Reanalysis

e Forecasting

X(1) ~ N(#’HO? 21|0),
X (2)[y (1) ~ N (a1, Xopn)

X(@)|y(l —1) ~ N(Nz’h’—la Ei|z’—1)

X(N)|y(LN = 1) ~ N(pyv—1, Znjv-1)-



e Filtering

XDy (1) ~ N (g1, Zap),
X(2)[y(1:2) ~ N (pa)2, Zop2)

X (@) [y (1:3) ~ N (pijis Ziji)

X(N)[y(1:N) ~ N(pniv, Eniw)-



e Reanalysis

X(N)|y(L:N) ~ N(pnin, Znjn), (same as filtering)
X(N = D]y(LN) ~ N(py—1n, Zv-1n)

X(@)|y(L:N) ~ N (pin, Zin)

X(0)|y(1:N) ~ N(IJJO|N7 EO|N)-

pin = i + Ji (Bis1n — Biv1)i)
Sy =i+ 3 (Bipwy — Biga) I7

where

Tx—1
Ji = 2 M 25,



Extended Kalman Filter

Nonlinear process and data models

X(i) = M(X(i—1)+8d; i=1,...,N
Y(i) = H(X(i))+e€, i=1,...,N

Approach: Linearize about the current mean and covariance. Use the lin-
ear Kalman Filter algorithm with M,; and H; the tangent linear operator

evaluated at the current time step i.e.

0 (M),

J

M) — 0 (M),
( Z)jk‘ - axk ) Z)jk axk

J




Then

fore=1,...,N

= Mz‘(#z‘—uz‘—l)

Qi +MX, ;M

= Xy H] (H 2 H + Ri)_l

= Mii-1 T K; (Y(Z) - %i(l‘ili—l))

(I-K;H;) %54



Ensemble Kalman Filter

Nonlinear process and data models

X(i) = Mi(X(i—1)+8; i=1,...,N

e Assume we are given estimates X;_j;—; and X;_j,_; at i—1.

A

o Assume X (i—1)|y(1:i—1) ~ N (X;_1}i—1, Xi_1)i—1) and draw independent

J

P11 for j=1,...,m.

samples x

e Create an ensemble of forecasts Xg|i—1 = Mi(xg_l‘i_l) + 0;



Forecast estimate

Find Ei|i—1 = COV()A(Z'H_l)
Compute gain in same manner K, = 2@.‘1._11_1? (H?ﬁm_lﬂi + Ri>
Compute an ensemble of simulated filtering states

Xf\z z|z 1 + K < ( ) + € — HZ(XZ|Z_1))

Filter estimates fiiu = % Z;n:l Xg“, and 3;; = Cov(fcm).
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