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Lecture Notes

Kalman Filter

Kalman Filter

Apply the Bayesian method to a discrete time stochastic process model and

data model, with the following assumptions:

• The prior distribution on the state is normal.

• The process model is linear.

• The conditional distribution on the data given the state is normal, with

a mean that depends linearly on the state.

These assumptions result in a normally distributed posterior distribution

for the state given the data. We can use matrix manipulations to find its

mean and variance. This is the Kalman Filter.

Activities 1.
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Let

X(i) = MiX(i− 1) + δi i = 1, . . . , N

Y(i) = HiX(i) + εi, i = 1, . . . , N

with X(0) ∼ N (µ,Σ), εi ∼ N (0,Ri), δi ∼ N (0,Qi).

The Bayesian method applied to the discrete time process and data mod-

els, i.e. the Kalman Filter, gives:

µi|i−1 = Miµi−1|i−1

Σi|i−1 = Qi + MiΣi−1|i−1M
T
i

Ki = Σi|i−1H
T
i

(
HT

i Σi|i−1Hi + Ri

)−1
µi|i = µi|i−1 + Ki

(
y(i)−Hiµi|i−1

)
Σi|i = (I−KiHi) Σi|i−1

for i = 1, . . . , N and with Ki the Kalman gain matrix.

We see in these formulas how as new data or measurements became avail-

able, we can easily update the previous optimal estimates without having to

recompute everything.
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Forecasting, Filtering and Reanalysis

• Forecasting

X(1) ∼ N (µ1|0,Σ1|0),

X(2)|y(1) ∼ N (µ2|1,Σ2|1)

...

X(i)|y(1:i− 1) ∼ N (µi|i−1,Σi|i−1)

...

X(N)|y(1:N − 1) ∼ N (µN |N−1,ΣN |N−1).
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• Filtering

X(1)|y(1) ∼ N (µ1|1,Σ1|1),

X(2)|y(1:2) ∼ N (µ2|2,Σ2|2)

...

X(i)|y(1:i) ∼ N (µi|i,Σi|i)

...

X(N)|y(1:N) ∼ N (µN |N ,ΣN |N).
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• Reanalysis

X(N)|y(1:N) ∼ N (µN |N ,ΣN |N), (same as filtering)

X(N − 1)|y(1:N) ∼ N (µN−1|N ,ΣN−1|N)

...

X(i)|y(1:N) ∼ N (µi|N ,Σi|N)

...

X(0)|y(1:N) ∼ N (µ0|N ,Σ0|N).

µi|N = µi|i + Ji

(
µi+1|N − µi+1|i

)
Σi|N = Σi|i + Ji

(
Σi+1|N −Σi+1|i

)
JT
i

where

Ji = Σi|iM
T
i Σ−1i+1|i
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Extended Kalman Filter

Nonlinear process and data models

X(i) = Mi(X(i− 1)) + δi i = 1, . . . , N

Y(i) = Hi(X(i)) + εi, i = 1, . . . , N

X(0) ∼ N (µ,Σ), εi ∼ N (0,Ri), δi ∼ N (0,Qi).

Approach: Linearize about the current mean and covariance. Use the lin-

ear Kalman Filter algorithm with Mi and Hi the tangent linear operator

evaluated at the current time step i.e.

(Mi)jk =
∂ (Mi)j
∂xk

, (Hi)jk =
∂ (Hi)j
∂xk
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Then

µi|i−1 = Mi(µi−1|i−1)

Σi|i−1 = Qi + MiΣi−1|i−1M
T
i

Ki = Σi|i−1H
T
i

(
HT

i Σi|i−1Hi + Ri

)−1
µi|i = µi|i−1 + Ki

(
y(i)−Hi(µi|i−1)

)
Σi|i = (I−KiHi) Σi|i−1

for i = 1, . . . , N
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Ensemble Kalman Filter

Nonlinear process and data models

X(i) = Mi(X(i− 1)) + δi i = 1, . . . , N

Y(i) = HiX(i) + εi, i = 1, . . . , N

X(0) ∼ N (µ,Σ), εi ∼ N (0,Ri), δi ∼ N (0,Qi).

• Assume we are given estimates x̂i−1|i−1 and Σ̂i−1|i−1 at i− 1.

• Assume X(i−1)|y(1:i−1) ∼ N (x̂i−1|i−1, Σ̂i−1|i−1) and draw independent

samples xj
i−1|i−1 for j = 1, . . . ,m.

• Create an ensemble of forecasts xj
i|i−1 =Mi(x

j
i−1|i−1) + δi
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• Forecast estimate

x̂i|i−1 =
1

m

m∑
j=1

xj
i|i−1,

• Find Σ̂i|i−1 = Cov(x̂i|i−1)

• Compute gain in same manner K̂i = Σ̂i|i−1H
T
i

(
HT

i Σ̂i|i−1Hi + Ri

)−1
• Compute an ensemble of simulated filtering states

xj
i|i = xj

i|i−1 + K̂i

(
y(i) + εj −Hi(x

j
i|i−1)

)
• Filter estimates x̂i|i = 1

m

∑m
j=1 xj

i|i, and Σ̂i|i = Cov(x̂i|i).
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