
Data Assimilation and Climate
AIMS Rwanda, March, 2020

Lecture and Lab Activities
Kalman Filter

1. Assume we have a non-stationary data model

Y(i) = HiX(i) + εi, i = 1, . . . , N

with n state variables so that X(i) ∈ Rn, for all i.

(a) If every variable in the state vector X(i) is observed at every time step, find Hi.

Solution: Hi = In, i.e. the n× n identity matrix.

(b) Let n = 4 and assume only the first two states are observed at the time step represented
by i = 10. Find H10.

Solution:

H10 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


.

2. Assume we have the one dimensional process model

x(i) = αx(i− 1) + δi, i = 1, . . . , N, δi ∼ N (0, q2),

and x(0) is from a standard normal distribution. Assume the data model is

y(i) = hix(i) + εi, i = 1, . . . , N, εi ∼ N (0, r2), hi =


1, i = 1, . . . , N1

0.1, i = N1 + 1, . . . , N2

1 i = N2 + 1, . . . , N

(a) Describe somewhat qualitatively, e.g. in words, how this choice of hi is effecting the data.

Solution: Between N1 and N2 the state is not observed as well as it is other times.

(b) Use Python to program and plot the process model using α = 0.8, q = 0.4 and N = 30.

Solution:

%matplotlib notebook

%pylab

def process(alpha,x0,q,N):

# One dimensional process model i.e. the dimension of X is 1

# N+1 is the number of elements in the time series, including the background

x=np.zeros(N+1)

x[0]=x0 # x0 is one dimension

for i in range(1,N+1):
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delta=np.random.normal(0,q)

x[i]=alpha*x[i-1]+delta

return x

#Find and plot states

N=30

q=0.1 # standard deviation on process

alpha=0.8

x0=np.random.normal(0,1)

x=process(alpha,x0,q,N)

figure(1)

clf()

plot(x,markersize=4)

ylabel(’Process variables x_i’, fontsize=12)

xlabel(’i’, fontsize=12)

show()

(c) Use Python to program and plot the data on the same graph as the process model. Use
r = 0.1, N = 30, N1 = 10, and N2 = 20.

Solution:

def data(x,r,N,N1,N2):

# Data has period of low observability represented between N1 and N2

y=np.zeros(N+1) # There is no data y[0]

for i in range(1,N+1):

eps=np.random.normal(0,r)

h=1

if np.logical_and(N1 +1 <= i, i <= N2):

h=0.1

y[i]=h*x[i]+eps

return y

# Find and plot data

r=0.03 # standard deviation on data

N1=10

N2=20

y=data(x,r,N,N1,N2)

figure(1)

plot(y[1:N],’rx’,markersize=4)

show()

(d) Run your code multiple times and describe how the graph changes as you sample differ-
ent values for δi and εi. If you have time change the values of α, q and r and describe
your observations.

Solution: For all values we see that the data between i = 10 and i = 20 do not reflect
the state as well as for other values of i. As we sample different values of δi and εi, the
shape of the graph changes significantly.

(e) Using the general formulas given for the Kalman filter to find the one dimensional for-
mulas for: µ1|0, σ1|0, k1, µ1|1, σ1|1. Leave your answer in terms of y(1).
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Solution:

µ1|0 = α× 0 = 0,

σ1|0 = q2 + α× 1× α = q2 + α2,

k1 = (q2 + α2)× 1
(
1× (q2 + α2)× 1 + r2

)−1
=

q2 + α2

q2 + α2 + r2

µ1|1 = 0 +
q2 + α2

q2 + α2 + r2
(1× y(1)− 0) =

q2 + α2

q2 + α2 + r2
y(1),

σ1|1 = (1− q2 + α2

q2 + α2 + r2
)(q2 + α2) =

r2(q2 + α2)

q2 + α2 + r2

(f) Write pseudo code to calculate µi|i−1, σi|i−1, ki, µi|i, σi|i for i = 1, . . . , N . Be sure to
initialize the loop over i. Hint: I suggest using mu old[i] for µi|i−1, sigma old[i] for
σi|i−1, mu new[i] for µi|i, sigma new[i] for σi|i.

Solution:

mu_new[0]=mu

sig_new[0]=sig

for i in range(1,N+1):

h=1

if np.logical_and(N1 +1 <= i, i <= N2):

h=0.1

mu_old[i]=alpha*mu_new[i-1]

sig_old[i]=q2+alpha*sig_new[i-1]*alpha

gain[i]=sig_old[i]*h*(h*sig_old[i]*h+r2)**(-1)

mu_new[i]=mu_old[i]+gain[i]*(y[i]-h*mu_old[i])

sig_new[i]=(1-gain[i]*h)*sig_old[i]

(g) Identify the variables in your pseudo code that give (i) a filtered estimate of the state
and its uncertainty, and (ii) a forecast of the state and its uncertainty.

Solution: The filtered estimates are in mu new[1:N] and standard deviation is
√

sig new[1:N].
The forcasted estimates are in mu old[1:N] and standard deviation is

√
sig old[1:N].

(h) Code the Kalman filter in Python for this example. Plot the states xi and data yi to-
gether with the filtered and forecasted estimates on the same graph. Label the graph
with a legend and discuss your results.

Solution: The forecasted estimates are similar to the filtered estimates. The estimates
are closer to the true state xi when hi = 1.

(i) Plot the standard deviation of the filtered and forecasted estimates together with their
errors on the same graph. Label the graph with a legend and discuss your results.

Solution: During the period of low visibility, i.e. hi = 0.1, the standard deviations are
larger. Forecasting standard deviations are larger than filtering standard deviations.
The errors some times lie outside the standard deviation bounds.
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3. Consider the nonlinear process model

X(i) = Mi(X(i− 1))

=


4x1(1− x1)
4x2(1− x2)

...
4xn(1− xn)

 (i− 1)

for i = 1, . . . , N . Find the tangent linearization of Mi evaluated at

X =


1
2
...
2


Solution:

∂ (Mi)

∂x
=


4− 8x1 0 . . . . . .

0 4− 8x2 0 . . .
...

...
. . .

...
0 . . . . . . 4− 8xn



Mi =


−4 0 . . . . . .
0 −12 0 . . .
...

...
. . .

...
0 . . . . . . −12


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