Lecture Activities Bayesian approach to Data Assimilation

1. Statistics review.

Given that

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

$$Cov(X,Y) = E[(X - \mu_x)(Y - \mu_y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x)(y - \mu_y) f_{XY}(x,y) dxdy$$

(a) Find E[c] where c is a constant.

Solution: E[c] = c

(b) Show that Cov(X, Y) = Cov(Y, X)

Solution: Use the definition above and see that $(x - \mu_x)(y - \mu_y) = (y - \mu_y)(x - \mu_x)$.

(c) If $\mathbf{Y} = (Y_2, Y_3)^T$, find the general matrix $Cov(\mathbf{Y})$.

Solution:

$$Cov(\mathbf{Y}) = \begin{bmatrix} Var(Y_2) & Cov(Y_2, Y_3) \\ Cov(Y_3, Y_2) & Var(Y_3) \end{bmatrix}$$

٠

(d) Suppose $X_1 \sim \mathcal{N}(\mu, \sigma^2)$ and that $X_2 = \alpha X_1$. Then X_2 is also normally distributed. Find the mean and variance of X_2 .

Solution:

$$E[X_2] = E[\alpha X_1] = \alpha E[X_1] = \alpha \mu,$$

$$Var[X_2] = Var[\alpha X_1] = \alpha^2 Var[X_1] = \alpha^2 \sigma^2.$$

$$X_2 \sim \mathcal{N}(\alpha \mu, \alpha^2 \sigma^2)$$

2. Consider the process model

$$X_{i+1} = \alpha X_i, \ i = 1, 2, 3,$$

and data model

$$Y_i = X_i + \epsilon_i, \ i = 2, 3.$$

along with

$$X_1 \sim \mathcal{N}(\mu_0, \sigma^2), \quad \epsilon_i \sim \mathcal{N}(0, \tau^2).$$

- (a) Find the means of X_2 , X_3 and X_4 . Solution: $E[X_2] = \alpha \mu_0$, $E[X_3] = \alpha^2 \mu_0$, $E[X_4] = \alpha^3 \mu_0$. Thus $\mathbf{X} = (X_1, X_2, X_3, X_4)$ has mean vector $\boldsymbol{\mu} = (\mu_0, \alpha \mu_0, \alpha^2 \mu_0, \alpha^3 \mu_0)^T$
- (b) Find the variances of X_2 , X_3 and X_4 . Solution: $Var(X_2) = \alpha^2 \sigma^2$, $Var(X_3) = \alpha^4 \sigma^2$, $Var(X_4) = \alpha^6 \sigma^2$.
- (c) Find $Cov(X_1, X_2)$, $Cov(X_1, X_3)$, $Cov(X_1, X_4)$, $Cov(X_2, X_3)$, $Cov(X_2, X_4)$, $Cov(X_3, X_4)$. Solution: $Cov(X_1, X_2) = \alpha \sigma^2$, $Cov(X_1, X_3) = \alpha^2 \sigma^2$, $Cov(X_1, X_4) = \alpha^3 \sigma^2$, $Cov(X_2, X_4) = \alpha^4 \sigma^2$, $Cov(X_3, X_4) = \alpha^5 \sigma^2$.

(d) Use your answers to $(\ref{eq:initial})$ and $(\ref{eq:initial})$ to form the covariance matrix Σ_X . Solution:

$$\Sigma_X = \sigma^2 \begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 \\ \alpha & \alpha^2 & \alpha^3 & \alpha^4 \\ \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 \\ \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 \end{bmatrix}$$

- 3. Assume we have process and data models for which
 - the prior distribution is $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \sigma_x^2 \mathbf{I}), \mathbf{X} \in \mathbb{R}^2$
 - the conditional distribution is $\mathbf{Y}|\mathbf{X} \sim \mathcal{N}(\mathbf{X}, \sigma_{y}^{2}\mathbf{I}), \mathbf{Y} \in \mathbb{R}^{2}$

and we use the Bayesian method to assimilate data.

(a) Find the gain matrix \mathbf{K} .

Solution: $\frac{\sigma_x^2}{\sigma_x^2 + \sigma_y^2} \mathbf{I}$

(b) Find the mean μ^* of the posterior distribution $\mathbf{X}|\mathbf{Y}$, and discuss how the data informed the state estimates.

Solution:

$$oldsymbol{\mu}^* = rac{\sigma_x^2}{\sigma_x^2 + \sigma_y^2} \left(egin{array}{c} y_1 \ y_2 \end{array}
ight)$$

State estimates are the data scaled by $\frac{\sigma_x^2}{\sigma_x^2 + \sigma_y^2}$.

(c) Find covariance matrix Σ^* of the posterior distribution X|Y and discuss the meaning its elements.

Solution:

$$\mathbf{\Sigma}^* = rac{\sigma_x^2 \sigma_y^2}{\sigma_x^2 + \sigma_y^2} \mathbf{I}$$

The first diagonal element of Σ^* is $\operatorname{Var}(X_1|\mathbf{Y})$ and the second diagonal element is $\operatorname{Var}(X_2|\mathbf{Y})$. The variance of both state estimates are the same. Since the off diagonal elements are zero, the estimates $x_1^* = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_y^2} y_1$ and $x_2^* = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_y^2} y_2$ have zero covariance.