Assignment 1 Maximum Likelihood Estimation and Bayesian Estimation

For all problems consider the process model

$$X_{i+1} = \alpha X_i + \delta_i, \quad i = 1, 2, 3,$$

and data model

$$Y_i = X_i + \epsilon_i, i = 2, 3.$$

1. Maximum Likelihood Estimation.

Assume $\delta_i = 0$ and $\epsilon_i \sim \mathcal{N}(0, \tau^2)$ for all i. Then

$$Y_2 \sim \mathcal{N}(\alpha x_1, 1 + \tau^2), \quad Y_3 \sim \mathcal{N}(\alpha^2 x_1, 1 + \tau^2 + \alpha^2), \quad \text{Cov}(Y_2, Y_3) = \alpha.$$

The joint distribution of $\mathbf{Y} = (Y_2, Y_3)^T$ given X_1 is normal with density

$$f_{Y|x_1} \propto \exp\left(-1/2(y_2 - \alpha x_1, y_3 - \alpha^2 x_1) \Sigma_Y^{-1} (y_2 - \alpha x_1, y_3 - \alpha^2 x_1)^T\right).$$

- (a) Use the general matrix $Cov(\mathbf{Y})$ found in class to find the covariance matrix Σ_Y .
- (b) Evaluate the exponent of the joint density $f_{Y|x_1}$. (Hint: The dimension of the exponent is 1).
- (c) Estimate x_1 from observations Y_2 and Y_3 by maximizing the density $f_{Y|X_1}$ with respect to x_1 .
- (d) Discuss how much the data Y_2 and Y_3 effect the re-analysis if (i) $0 < \alpha < 1$ and (ii) $\tau \ll 1$.
- 2. Bayesian Estimation.

Assume $X_1 \sim \mathcal{N}(\mu_0, \sigma^2)$ and $\epsilon_i \sim \mathcal{N}(0, \tau^2)$. Let $\mathbf{X} = (X_1, X_2, X_3, X_4)^T$ and $\mathbf{Y} = (Y_2, Y_3)^T$, then

- prior distribution is $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}_X)$
- conditional distribution of the data given process model is $\mathbf{Y}|\mathbf{X} \sim \mathcal{N}(\mathbf{H}\mathbf{X}, \mathbf{\Sigma}_Y)$
- posterior distribution is $\mathbf{X}|\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}^*, \boldsymbol{\Sigma}^*)$

Note that for this example Σ_Y is the same as in (??), μ and Σ_X are in the Bayes lecture activity, while \mathbf{H} , μ^* and Σ^* are given in the Bayes lecture notes.

(a) Use the sympy package in Python to show that the variance of the posterior distribution for X_1 (i.e. reanalysis) is

$$var(X_1|\mathbf{y}) = \frac{\sigma^2(\tau^4 + \tau^2(\alpha^2 + 2) + 1)}{\tau^4 + \tau^2((\alpha^2 + 1)\alpha^2\sigma^2 + \alpha^2 + 2) + \alpha^2\sigma^2 + 1}.$$

Show that

$$\operatorname{var}(X_1|\mathbf{y}) < \operatorname{var}(X_1)$$

and discuss the relationship between the posterior variance and the prior variance.

(b) Use the sympy package in Python to show that the variance of the posterior distribution for X_3 (i.e. filtering) is

$$var(X_3|\mathbf{y}) = \frac{\alpha^4 \sigma^2 (\tau^4 + \tau^2 (\alpha^2 + 2) + 1)}{\tau^4 + \tau^2 ((\alpha^2 + 1)\alpha^2 \sigma^2 + \alpha^2 + 2) + \alpha^2 \sigma^2 + 1}.$$

Show that

$$\operatorname{var}(X_3|\mathbf{y}) < \operatorname{var}(X_3)$$

and discuss the relationship between the posterior variance and the prior variance.